Курсовая работа по информатике МНК. Аппроксимация данных методом наименьших квадратов
Скачать 0.71 Mb.
|
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" КУРСОВАЯ РАБОТА По дисциплине: ________Информатика__________________________ (наименование учебной дисциплины согласно учебному плану) ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Тема: Аппроксимация данных методом наименьших квадратов Автор: студент гр. ЭРБ-16 _ _____________ /Акульшин Д.А./ (шифр группы) (подпись) (Ф.И.О.) ОЦЕНКА: ___________ Дата: _______________ ПРОВЕРИЛ: Руководитель проекта доцент _____________ / Ильин А.Е./ (должность) (подпись) (Ф.И.О.) Санкт-Петербург 2017 г. Министерство Образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования Санкт-Петербургский горный Университет УТВЕРЖДАЮ Заведующий кафедрой Доцент Маховиков А.Б. ___________/________/ "___"__________2017 г. Кафедра информатики и компьютерных технологий КУРСОВАЯ РАБОТА По дисциплине Информатика _________________________________________________________________________ (наименование учебной дисциплины согласно учебному плану) ЗАДАНИЕ Студенту группы ЭРБ-16 Акульшин Д.А. (шифр группы) (Ф.И.О.) 1. Тема работы: Аппроксимация функции методом наименьших квадратов 2. Исходные данные к проекту: Вариант №1 3. Содержание пояснительной записки: Пояснительная записка включает в себя задание на выполнение работы, расчётные формулы, расчёты с помощью электронных таблиц MicrosoftExcel, расчёты с использованием пакетов MathCAD, программу расчёта (на языке VBA), графическое решение, заключение, библиографический список 4. Перечень графического материала: таблицы и графики. 5. Срок сдачи законченного проекта: 02.05.2017 Руководитель проекта доцент ________________ / Ильин А.Е. / (должность) (подпись) (Ф.И.О.) Дата выдачи задания: 15.02.2017. АннотацияПояснительная записка представляет собой отчет о выполнении курсовой работы. В ней рассматриваются вопросы по нахождению эмпирических формул методом наименьших квадратов (МНК) посредством возможностей пакетов Microsoft Excel, а также рассматривается решение данной задачи в программе MathCAD и VBA. В работе получены уравнения различных видов с помощью аппроксимации линейной, квадратичной и экспоненциальной зависимостей. По окончании работы сделан вывод, каким методом задача решена лучше всего. Страниц 34, таблиц 10, рисунков 12. Abstract The explanatory note represents the report on performance of term paper performance. In it questions of empirical formulas by a method of the least squares (МNK) by means of possibilities of package Microsoft Excel are considered, and also the decision of the given problem in MathCAD and VBA is considered. In work the equations of various kinds by means of approximation linear, square-law and exponential dependences are received. Upon termination of work the conclusion is drawn, the problem is solved by what method is better. Pages 34, tables 10, figures 124. Оглавление Введение 5 1.Постановка задачи 6 2. Математические методы и средства решения 7 2.1. Построение эмпирических формул методом наименьших квадратов 7 2.2. Линейная зависимость 10 2.3. Квадратичная зависимость 10 2.4. Линеаризация экспоненциальной зависимости 11 2.5. Элементы теории корреляции 11 2.6. Коэффициент детерминированности 14 3.Исходные данные 15 4.Аппроксимация функции с помощью Excel 16 4.1.Линейная аппроксимация 17 4.2.Квадратичная аппроксимация 18 4.3.Экспоненциальная аппроксимация 19 4.4.Коэффициент корреляции. Коэффициенты детерминированности 20 4.5.Графический способ в Excel 22 4.6. Использование функции ЛИНЕЙН 25 4.6.1. Назначение функции ЛИНЕЙН 25 4.6.2. Получение числовых характеристик зависимости 25 5. Аппроксимация функции с помощью MathCAD 27 5.1. Исходные данные 27 5.2. Линейная аппроксимация 28 5.3. Полиномиальная регрессия 29 5.4. Экспоненциальная регрессия 30 6. Программа для аппроксимации функций методом наименьших квадратов на языке VBA 32 Выводы 37 Рекомендательный библиографический список 38 |