Курсовая работа по информатике МНК. Аппроксимация данных методом наименьших квадратов
Скачать 0.71 Mb.
|
2.4. Линеаризация экспоненциальной зависимостиВ ряде случаев в качестве эмпирической формулы берут функцию в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость (6) где и неопределенные коэффициенты. Линеаризация достигается путем логарифмирования равенства (6), после чего получаем соотношение (7) Обозначим и соответственно через и , тогда зависимость (6) может быть записана в виде , что позволяет применить формулы (4) с заменой на и на . 2.5. Элементы теории корреляцииГрафик восстановленной функциональной зависимости по результатам измерений называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности. При этом результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке этой таблицы приводятся численности тех пар , компоненты которых попадают в соответствующие интервалы группировки по каждой переменной. Предполагая длины интервалов группировки (по каждой переменной) равными между собой, выбирают центры (соответственно ) этих интервалов и числа в качестве основы для расчетов. Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой. Коэффициент корреляции вычисляется по формуле: (8) где и среднее арифметическое значение соответственно по x и y. Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе к 1, тем теснее линейная связь между x и y. Корреляционное отношение вычисляется по формуле , (9) где , а числитель характеризует рассеяние условных средних около безусловного среднего . Всегда . Равенство соответствует случайным некоррелированным величинам; тогда и только тогда, когда имеется точная функциональная связь между y и x. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина используется в качестве индикатора отклонения регрессии от линейной. Корреляционное отношение является мерой корреляционной связи y с x , в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построенная кривая отражает эмпирические данные вводится еще одна характеристика коэффициент детерминированности. Для его описания рассмотрим следующие величины. - полная сумма квадратов, где среднее значение . Можно доказать следующее равенство . Первое слагаемое равно и называется остаточной суммой квадратов. Оно характеризует отклонение экспериментальных данных от теоретических. Второе слагаемое равно и называется регрессионной суммой квадратов и оно характеризует разброс данных. Очевидно, что справедливо следующее равенство . |