Главная страница
Навигация по странице:

  • 2)основные углеводы пищи…

  • 3) количественное определение остаточного азота в сыворотке крови.

  • 4) В стационар поступил больной в активной стадии атеросклероза. В какой фракции липопротеидов крови больше всего содержится холестерин

  • Билет 2 1)Физ-хим св-ва беков…

  • 3) количественное определение мочевой кислоты в крови

  • 4) Пожилой больной с резко выраженным сахарным диабетом внезапно потерял сознание (диабетическая кома). Может ли врач установить характер этой комы без лабораторного подтверждения

  • Билет 3 1)Струк.орг-ия белк.молекул…

  • 2)Особ-ти хим.состава и метаб.нерв.ткани..

  • 3)количественное определение активности трансаминаз в сыворотке крови

  • 4)Больному с наклонностью к полноте рекомендовано ограничить употребление углеводов и заниматься физкультурой. Объясните почему

  • Билет 4 1)Строение ферментов…

  • Билет 1 1 белки как основа жизни. Роль белков


    Скачать 1.24 Mb.
    НазваниеБилет 1 1 белки как основа жизни. Роль белков
    Дата08.02.2019
    Размер1.24 Mb.
    Формат файлаdocx
    Имя файлаOtvety_na_bilety_po_BKh.docx
    ТипДокументы
    #66928
    страница1 из 14
      1   2   3   4   5   6   7   8   9   ...   14

    Билет 1

    1)белки как основа жизни. Роль белков…

    Белки – это высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот.

    Каталитическая функция. Транспортная функция. Защитная функция. Сократительная функция. Структурная функция. Гормональная функция. Питательная функция

    Молекулы белков представляют собой линейные полимеры, состоящие из α-L-аминокислот  и, в некоторых случаях, из модифицированных основных аминокислот.

    Аминокислоты  органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.

    Классификация аминокислот.

    I. Физико-химическая – основана на различиях в физико-химических свойствах аминокислот. 1) Гидрофобные аминокислоты (неполярные). Компоненты радикалов содержат обычно углеводородные группы и ароматические кольца. К гидрофобным аминокислотам относятся ала, вал, лей, иле, фен, три, мет. 2) Гидрофильные (полярные) незаряженные аминокислоты. Радикалы таких аминокислот содержат в своем составе полярные группировки (-ОН, -SH, -NH2). К полярным незаряженным относятся гли, сер, тре, тир, цис, глн, асн. 3) Полярные отрицательно заряженные аминокислоты. К ним относятся аспарагиновая и глутаминовая кислоты. 4) Полярные положительно заряженные аминокислоты: аргинин, лизин и гистидин.

    II. Биологическая классификация. 1) Незаменимые аминокислоты (вал, иле, лей, лиз, мет, тре, три, фен). 2)Заменимые аминокислоты. Строение аминокислот. Все аминокислоты являются α-аминокислотами. Аминокислоты амфотерные соединения. Хим св-ва АК: вступают во все реакции свойственные для амино- и карбоксильной группы; могут взаимодействовать друг с другом; в водных растворах существуют в виде диполя. Р-и на АК: биуретовая (на пепт св ), ксанопротеиновая (на ароматические АК), р-я Миллона (на тир), Р-я Фоля (на серосодержащие АК), р-я Шульце-Распайля (на триптофан)(формулы аминокислот)

    2)основные углеводы пищи…

    По количеству углеводных остатков УВ разделяются на 3 основных класса: 1. моносахариды (глюкоза, фруктоза, галактоза, манноза и др.); 2. дисахариды (мальтоза, сахароза, лактоза); 3. полисахариды (гомополисахариды крахмал, гликоген, клетчатка). Крахмал – резервный гомополисахарид растений, построенный из остатков α-глюкозы. Крахмал представляет собой смесь двух гомополисахаридов: амилозы и амилопектина. В амилозе остатки глюкозы связаны α-1,4-гликозидными связями, в точках ветвления амилопектина - α-1,6-гликозидными связями. Молекулярная масса крахмала – 106-107. Гликоген – резервный гомополисахарид высших животных и человека, построенный из остатков α–Д-глюкозы. Гликоген содержится практически во всех органах и тканях человека и животных; наибольшее его количество находится в печени и мышцах. Молекулярная масса гликогена 107 – 109 и выше. Гликоген по своему строению близок к амилопектину. Остатки глюкозы связаны α-1,4-гликозидными и α-1,6-гликозидными связями (в точках ветвления). В молекуле гликогена имеется большее число α-1,6-гликозидных связей по сравнению с крахмалом. Клетчатка – это единственный гомополисахарид, который не переваривается в ЖКТ человека, т.к. пищеварительные железы человека не вырабатывают β–глюкозидазу. Однако клетчатка выполняет ряд важных функций: 1. способствует формированию кала; 2. усиливает перистальтику кишечника; 3. является адсорбентом, с которым из кишечника выводятся излишки холестерина, соли тяжелых металлов. Роль углеводов: 1. Энергетическая (глюкоза – основной источник энергии для организма. При сгорании 1 г УВ выделяется 4 ккал энергии). 2. Структурно-функциональная (УВ – обязательный компонент гликопротеинов и протеогликанов, которые выполняют разнообразные функции: гормональную, рецепторную, защитную, ферментативную и др.). 3. Метаболическая (пентозы участвуют в синтезе нуклеиновых кислот и нуклеотидных коферментов). Суточная потребность в углеводах составляет 400-500 г. Переваривание углеводов - это совокупность процессов поэтапного ферментативного гидролиза полисахаридов до моносахаридов, которые всасываются в кишечнике, разносятся током крови к печени и другим тканям организма, где подвергаются различным метаболическим превращениям. Переваривание УВ начинается в ротовой полости под действием фермента амилазы слюны (оптимум рН=6,8-7,2), которая гидролизует в крахмале α -1,4-гликозидные связи с образованием декстринов. Всасывание УВ из просвета кишечника в энтероцит и из энтероцита в кровь происходит: 1) облегченной диффузией с участием переносчиков; 2) вторично активным транспортом (симпортом с ионами натрия) с использованием энергии K, Na-АТФ-азы. Быстрее всех всасываются глюкоза и галактоза. От кишечника всосавшиеся моносахариды транспортируются в печень, где происходит до 90% превращений моносахаров. Поступление глюкозы в клетки сердечной, скелетных мышц и жировой ткани регулируется инсулином.\

    3) количественное определение остаточного азота в сыворотке крови.

    Определение остаточного азота ведут в безбелковом фильтрате крови. При нагревании с конц. серной кислотой безбелковый фильтрат минерализуется, затем определяются колориметрически с реактивом Несслера. Сульфат аммония образует с реактивом Несслера желто-оранжевое окрашивание. Расчет ведут по количеству стандартного раствора NH4Cl, пошедшего на титрование опытной пробы:

    (А · 0.05) ·100% = мг%

    0.066

    мг% = 0.714 = ммоль/л, где А – количество стандартного раствора, пошедшего на титрование.

    норма: 20 – 40 мг%

    15 – 25 ммоль/л

    клинико-диагностическое значение: Подъем уровня остаточного азота (азотемия) наблюдается при ряде патологических состояний. В клинической практике азотемию подразделяют на 2 типа: ретенционную и продукционную. Ретенционная в основном зависит от недостаточной функции почек и обусловлена недостатком мочевины. Продукционная азотемия связана с поступлением в кровоток избыточного количества азотсодержащих веществ, как правило, за счет повышенного распада тканевых белков при сохраненной выделительной функции почек. Повышенное содержание остаточного азота (свыше 80 – 90 мг%) – уремия.
    4) В стационар поступил больной в активной стадии атеросклероза. В какой фракции липопротеидов крови больше всего содержится холестерин?
    Больше все холестерина содержится в липопротеинах низкой плотности (ЛПНП), их еще называют атерогенными.
    Билет 2

    1)Физ-хим св-ва беков…

    1. Молекулярная масса. Молекулярная масса белков зависит от количества аминокислот в каждой субъединице. 2. Буферные свойства. Белки – амфотерные полиэлектролиты, т.е. они сочетают в себе кислые и основные свойства. В зависимости от этого белки могут быть кислыми и основными. 3. Факторы стабилизации белка в растворе. ГИДРАТНАЯ ОБОЛОЧКА – это слой молекул воды, определенным образом ориентированных на поверхности белковой молекулы. 4. Факторы, снижающие растворимость белков. Значение рН, при котором белок становится электронейтральным, называется изоэлектрической точкой (ИЭТ) белка. Денатурация – это последовательное нарушение четвертичной, третичной, вторичной структур белка, сопровождающееся потерей биологических свойств. Денатурированный белок выпадает в осадок. Осадить белок можно, изменяя рН среды (ИЭТ), либо высаливанием(р-ми NaCl, (NH4)2SO4), либо действуя каким-либо фактором денатурации. Физические факторы: 1. Высокие температуры. Часть белков подвергается денатурации уже при 40-50 2. Ультрафиолетовое облучение 3. Рентгеновское и радиоактивное облучение 4. Ультразвук 5. Механическое воздействие (например, вибрация). Химические факторы: 1. Концентрированные кислоты и щелочи. 2. Соли тяжелых металлов (например, CuSO4). 3. Органические растворители (этиловый спирт, ацетон) 4. Нейтральные соли щелочных и щелочноземельных металлов (NaCl, (NH4)2SO4)

    2)Пищ.жиры,их гидролиз…

    Жиры, или триглицериды — природные органические соединения, полные сложные эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. В живых организмах выполняют структурную, энергетическую и др. функции. Наряду с углеводами и белками, жиры — один из главных компонентов питания. Жидкие жиры растительного происхождения обычно называют маслами. Гидролиз жиров. Расщепление жиров на глицерин и жирные кислоты проводится обработкой их щёлочью — (едким натром), перегретым паром, иногда — минеральными кислотами. Этот процесс называется омылением. Липопротеинлипаза  — фермент, относящийся к классу липаз. ЛПЛ расщепляет триглицериды самых крупных по размеру и богатых липидами липопротеинов плазмы крови — хиломикронов и липопротеинов очень низкой плотности (ЛПОНП или ЛОНП)). ЛПЛ регулирует уровень липидов в крови, что определяет её важное значение в атеросклерозе. Гиперлипидемия (гиперлипопротеинемия) — аномально повышенный уровень липидов и/или липопротеинов в крови человека. Нарушение обмена липидов и липопротеинов встречается довольно часто в общей популяции. Гиперлипидемия является важным фактором риска развития сердечно-сосудистых заболеваний в основном в связи со значительным влиянием холестерина на развитие атеросклероза. Кроме этого, некоторые гиперлипидемии влияют на развитие острого панкреатита.
    3) количественное определение мочевой кислоты в крови

    Метод Мюллера-Зейферта основан на способности мочевой кислоты взаимодействовать с фосфорно-вольфрамовым реактивом с образованием соединения, окрашенного в синий цвет. Интенсивность окрашивания пропорциональна количеству мочевой кислоты. По показаниям ФЭКа и по формуле рассчитывают содержание мочевой кислоты:

    Сст - Еоп

    Мг% = Ест , где Сст = 2 мг%

    Ест = 0,06

    норма: 2-6 мг%

    0,12-0,36 ммоль/л

    клинико-диагностическое значение: Гиперурикемия является основным симптомом подагры, а также наблюдается при синдроме Леша-Нихана – врожденном дефиците фермента гуанингипоксантинфосфорибозилтрансферазы. Подъем мочевой кислоты может быть следствием усиленного распада тканевых нуклеотидов (патологическое изменение крови, миелоз). Это явление носит название «вторичной» подагры. Некоторое нарастание мочевой кислоты наблюдается при диете, богатой пуринами. Снижение мочевой кислоты наблюдается при акромегалии, болезни Коновалова-Вильсона, ксантинурии.
    4) Пожилой больной с резко выраженным сахарным диабетом внезапно потерял сознание (диабетическая кома). Может ли врач установить характер этой комы без лабораторного подтверждения?

    При сахарном диабете наблюдается кетонемия (повышение кетоновых тел в крови). Одним из кетоновых тел является ацетон. От таких пациентов пахнет ацетоном.

    Билет 3

    1)Струк.орг-ия белк.молекул…

    Первичная структура белка - последовательность аминокислот в полипептидной цепи (ППЦ). Пептидная связь формируется только за счет альфа-аминогруппы и альфа-карбоксильной группы аминокислот. Вторичная структура - это пространственная организация стержня полипептидной цепи в виде α-спирали или β-складчатой структуры. В α-спирали на 10 витков приходится 36 аминокислотных остатков. Фиксируется α-спираль с помощью водородных связей между NH-группами одного витка спирали и С=О группами соседнего витка. β-Складчатая структура удерживается также водородными связями между С=О и NH-группами. Третичная структура - трехмерное взаимное расположение в пространстве спиралеобразных и складчатых участков полипептидной цепи. В формировании третичной структуры участвуют прочные дисульфидные связи и все слабые типы связей (ионные, водородные, гидрофобные, Ван-дер-ваальсовые взаимодействия). Четвертичная структура – трехмерная организация в пространстве нескольких полипептидных цепей. Каждая цепь называется субъединицей (или протомером). Поэтому белки, обладающие четвертичной структурой, называют полигомерными белками.

    2)Особ-ти хим.состава и метаб.нерв.ткани..

    Дыхание. На долю головного мозга приходится 2–3% от массы тела. В то же время потребление кислорода головным мозгом в состоянии физического покоя достигает 20–25% от общего потребления его всем организмом, а у детей в возрасте до 4 лет мозг потребляет даже 50% кислорода, утилизируемого всем организмом. Во время прохождения через мозг кровь теряет около 8 об.% кислорода. В 1 мин на 100 г мозговой ткани приходится 53–54 мл крови. Следовательно, 100 г мозга потребляет в 1 мин 3,7 мл кислорода, а весь головной мозг (1500 г) – 55,5 мл кислорода. Метаболизм углеводов. Основным субстратом дыхания мозговой ткани является глюкоза. В 1 мин 100 г ткани мозга потребляют в среднем 5 мг глюкозы. Подсчитано, что более 90% утилизируемой глюкозы в ткани мозга окисляется до СО2 и Н2О при участии цикла трикарбоновых кислот. В физиологических условиях роль пентозофосфатного пути окисления глюкозы в мозговой ткани невелика, однако этот путь окисления глюкозы присущ всем клеткам головного мозга. Образующаяся в процессе пентозофосфатного цикла восстановленная форма НАДФ (НАДФН) используется для синтеза жирных кислот и стероидов. Интересно отметить, что в расчете на всю массу головного мозга содержание глюкозы в нем составляет около 750 мг. За 1 мин тканью мозга окисляется 75 мг глюкозы. Следовательно, количество глюкозы, имеющееся в ткани головного мозга, могло бы быть достаточным лишь на 10 мин жизни человека. Метаболизм макроэргов. Интенсивность обновления богатых энергией фосфорных соединений в го- ловном мозге очень велика. Именно этим можно объяснить, что содержание АТФ и креатинфосфата в мозговой ткани характеризуется значитель- ным постоянством. В случае прекращения доступа кислорода мозг может ≪просуществовать≫ немногим более минуты за счет резерва лабильных фосфатов. Метаболизм аминокислот и белков Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутаминовой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г). На долю глутаминовой кислоты вместе с ее амидом глутамином и трипептидом глутатионом приходится более 50% α-аминоазота головного мозга. Известно, что обмен аминокислот в мозговой ткани протекает в разных направлениях. Прежде всего пул свободных аминокислот используется как источник ≪сырья≫ для синтеза белков и биологически активных аминов. Метаболизм липидов Липиды составляют около половины сухой массы головного мозга. Как отмечалось, в нервных клетках серого вещества особенно много фосфоглицеридов, а в миелиновых оболочках нервных стволов – сфингомиелина. Из фосфоглицеридов серого вещества мозга наиболее интенсивно обновляются фосфатидилхолины и особенно фосфатидилинозитол. Обмен липидов миелиновых оболочек протекает с небольшой скоростью. Холестерин, цереброзиды и сфингомиелины обновляются очень медленно. Ткань головного мозга взрослого человека содержит много холестерина (около 25 г). У новорожденных в головном мозге всего 2 г холестерина; количество его резко возрастает в первый год жизни (примерно в 3 раза), при этом биосинтез холестерина происходит в самой мозговой ткани. У взрослых людей синтез холестерина в головном мозге резко снижается. Основная часть холестерина в зрелом мозге находится в неэтерифици- рованном состоянии, эфиры холестерина обнаруживаются в относительно высокой концентрации в участках активной миелинизации.

    3)количественное определение активности трансаминаз в сыворотке крови: Количественное определение активности амилазы сыворотки крови амилокластическим методом. Амилаза сыворотки крови гидролизует крахмал в течение 60 минут. Остаток крахмала выявляется качественной реакцией с йодом. Активность амилазы определяется по разности окраски между контролем и опытом на ФЭКе. 16 – 30 мг крахмала, гидролизуемого за 1 час 1 мл сыворотки крови. Определение активности амилазы сыворотки крови является диагностическим тестом при заболеваниях поджелудочной железы. Фермент обладает небольшой молекулярной массой и размерами, легко проникает в кровь из поджелудочной железы и кишечника, фильтруется в мочу. Увеличение активности амилазы крови наблюдается при заболеваниях поджелудочной и околоушной желез, диабетическом кетоацидозе, заболеваниях желчных путей.

    4)Больному с наклонностью к полноте рекомендовано ограничить употребление углеводов и заниматься физкультурой. Объясните почему?

    При недостаточности движения происходит снижение утилизации Ацетил-КоА в цикле Кребса и направление его на синтетические процессы, в том числе и синтез жирных кислот и жиров. Углеводы, являются одним из источникв Ацетил-КоА для организма.

    Билет 4

    1)Строение ферментов…

    По строению ферменты могут быть:

    1. однокомпонентные (простые белки),

    2. двухкомпонентные (сложные белки).

    К ферментам - простым белкам – относятся пищеварительные ферменты (пепсин, трипсин). К ферментам – сложным белкам – можно отнести ферменты, катализирующие окислительно - восстановительные реакции. Для каталитической активности двухкомпонентных ферментов необходим дополнительный химический компонент, который называется кофактор, их могут играть как неорганические вещества (ионы железа, магния, цинка, меди и др.), так и органические вещества – коферменты (например, активные формы витаминов). Для работы ряда ферментов необходимы и кофермент, и ионы металлов (кофактор). Коферменты – низкомолекулярные органические вещества небелковой природы, связанные с белковой частью фермента временно и непрочно. В случае, когда небелковая часть фермента (кофермент) связана с белковой прочно и постоянно, то такую небелковую часть называют простетической группой. Белковая часть сложного белка-фермента называют апоферментом. Вместе апофермент и кофактор образуют холофермент.

    В процессе ферментативного катализа, принимает участие не вся белковая молекула, а лишь определенный участок – активный центр фермента. Активный центр ферментов представляет часть молекулы фермента, к которой присоединяется субстрат и от которой зависят каталитические свойства молекулы фермента. В активном центре фермента выделяют «контактный» участок – участок, притягивающий и удерживающий субстрат на ферменте благодаря своим функциональным группам и «каталитический» участок, функциональные группы которого непосредственно участвуют в каталитической реакции. У некоторых ферментов, кроме активного центра, имеется еще «другой» центр – аллостерический. С аллостерическим центром взаимодействуют различные вещества (эффекторы), чаще всего различные метаболиты. Соединение этих веществ с аллостерическим центром приводит к изменению конформации фермента (третичной и четвертичной структуры). Активный центр в молекуле фермента либо создается, либо он нарушается. В первом случае реакция ускоряется, во втором случае тормозится. Поэтому аллостерический центр называют регуляторным центром фермента. Ферменты, имеющие в своей структуре аллостерический центр, называются регуляторными или аллостерическими. В основу теории механизма действия ферментов положено образование фермент-субстратного комплекса. Механизм действия фермента:

      1. образование фермент-субстратного комплекса, субстрат прикрепляется к активному центру фермента.

    2. на второй стадии ферментативного процесса, которая протекает медленно, происходят электронные перестройки в фермент-субстратном комплексе. Фермент (En) и субстрат (S) начинают сближаться, чтобы вступить в максимальный контакт и образовать единый фермент-субстратный комплекс. Продолжительность второй стадии зависит от энергии активации субстрата или энергетического барьера данной химической реакции. Энергия активации – энергия, необходимая для перевода всех молекул 1 моля S в активированное состояние при данной температуре. Для каждой химической реакции существует свой энергетический барьер. Благодаря образованию фермент-субстратного комплекса снижается энергия активации субстрата, реакция начинает протекать на более низком энергетическом уровне. Поэтому вторая стадия процесса лимитирует скорость всего катализа.

    3. на третьей стадии происходит сама химическая реакция с образованием продуктов реакции. Третья стадия процесса непродолжительна. В результате реакции субстрат превращается в продукт реакции; фермент-субстратный комплекс распадается и фермент выходит неизмененным из ферментативной реакции. Таким образом, фермент дает возможность за счет образования фермент-субстратного комплекса проходить химической реакции обходным путем на более низком энергетическом уровне.
    Кофактор - небелковое вещество, которое обязательно должно присутствовать в организме в небольших количествах, чтобы соответствующие ферменты смогли выполнить свои функции. В состав кофактора входят коферменты и ионы металлов (например, ионы натрия и калия).

    Все ферменты относятся к глобулярным белкам, причем каждый фермент выполняет специфическую функцию, связанную с присущей ему глобулярной структурой. Однако активность многих ферментов зависит от небелковых соединений, называемых кофакторами. Молекулярный комплекс белковой части (апофермента) и кофактора называется холоферментом. Роль кофактора могут выполнять ионы металлов (Zn2+, Mg2+, Mn2+, Fe2+, Cu2+, K+, Na+) или сложные органические соединения. Органические кофакторы обычно называют коферментами, некоторые из них являются производными витаминов. Тип связи между ферментом и коферментом может быть различным. Иногда они существуют отдельно и связываются друг с другом во время протекания реакции. В других случаях кофактор и фермент связаны постоянно и иногда прочными ковалентными связями. В последнем случае небелковая часть фермента называется простетической группой. Роль кофактора в основном сводится к следующему:

    • изменение третичной структуры белка и создание комплементарности между ферментом и субстратом;

    • непосредственное участие в реакции в качестве еще одного субстрата.


    Активаторами могут быть:

    1) кофакторы, т.к. они важные участники ферментативного процесса. Например, металлы, входящие

    в состав каталитического центра фермента: амилаза слюны активна в присутствии ионов Са, лактатдегидрогеназа (ЛДГ) – Zn, аргиназа – Mn, пептидаза – Mg и коферменты: витамин С, производные различных витаминов (НАД, НАДФ, ФМН, ФАД, КоАSH и др.). Они обеспечивают связывание активного центра фермента с субстратом.

    2) анионы также могут оказывать активирующее влияние на активность фермента, например, анионы

    Сl- активируют слюнную амилазу;

    3) активаторами могут служить также вещества, создающие оптимальное значение рН среды для проявления ферментативной активности, например, НСl для создания оптимальной среды желудочного содержимого для активации пепсиногена в пепсин;

    4) активаторами являются также вещества, переводящие проферменты в активный фермент, например, энтерокиназа кишечного сока активирует превращение трипсиногена в трипсин;

    5) активаторами могут быть разнообразные метаболиты, которые связываются с аллостерическим центром фермента и способствуют формированию активного центра фермента.

    Ингибиторы - это вещества, которые тормозят активность ферментов. Различают два основных типа ингибирования: необратимое и обратимое. При необратимом ингибировании - ингибитор прочно (необратимо) связывается с активным центром фермента ковалентными связями, изменяет конформацию фермента. Таким образом, могут действовать на ферменты соли тяжелых металлов (ртути, свинца, кадмия и др.). Обратимое ингибирование - это такой тип ингибирования, когда активность ферментов может восстанавливаться. Обратимое ингибирование бывает 2-х типов: конкурентное и неконкурентное. При конкурентном ингибировании обычно субстрат и ингибитор очень похож по химическому строению. При этом виде ингибирования субстрат (S) и ингибитор (I) одинаково могут связываться с активным центром фермента. Они конкурируют друг с другом за место в активном центре фермента. Классический пример, конкурентного ингибирование – торможение действия сукцинатдегидрогеназы малоновой кислотой. Неконкурентные ингибиторы связываются с аллостерическим центром фермента. Вследствие этого происходят изменения конформации аллостерического центра, которые приводят к деформации каталитического центра фермента и снижению ферментативной активности. Часто аллостерическими неконкурентными ингибиторами выступают продукты метаболизма. Лекарственные свойства ингибиторов ферментов (Контрикал, Трасилол, Аминокапроновая кислота, Памба). Контрикал (апротинин) применяют для лечения острого панкреатита и обострения хронического панкреатита, острого панкреонекроза, острых кровотечений. 
      1   2   3   4   5   6   7   8   9   ...   14


    написать администратору сайта