Билеты Микробиология. 1. Бактериофаги (фаги)
Скачать 0.53 Mb.
|
20 1) фаги, их применение 1. Бактериофаги (фаги) — это вирусы, поражающие бактериальные клетки (в качестве клетки-хозяина). Вирионы фагов состоят из головки, содержащей нуклеиновую кислоту вируса, и более или менее выраженного отростка. Нуклеокапсид головки фага имеет кубический тип симметрии, а отросток — спиральный тип, т. е. бактериофаги имеют смешанный тип симметрии нук-леокапсида. Большинство фагов содержат кольцевую двунитчатую ДНК, и лишь некоторые — РНК или однонитчатую ДНК. Фаги, как и другие вирусы, обладают антигенными свойствами и содержат группоспецифические (по ним делятся на серотипы) и типо-специфические антигены. Сыворотки, содержащие антитела к этим антигенам (антифаговые сыворотки), нейтрализуют лити-ческую активность фагов. Взаимодействие бактериофага с клеткой происходит в соответствии с основными типами взаимодействия, характерными для всех вирусов, — продуктивная (литическая), абортивная вирусная и латентная (лизогения, вирогения) инфекция, а также вирус-индуцированная трансформация. По характеру взаимодействия фага с клеткой все бактериофаги делятся: • на вирулентные (литические), вызывающие продуктивную инфекцию и лизис бактериальной клетки; • умеренные, вызывающие латентную инфекцию и ассоциацию генома вируса с бактериальной хромосомой. Умеренные фаги, в отличие от вирулентности, не вызывают гибели бактериальных клеток и при взаимодействии с ней переходят в неинфекционную форму фага, называемую профагом. Профаг — геном фага, ассоциированный с бактериальной хромосомой. Профаг, ставший частью хромосомы клетки, при ее размножении реплицируется синхронно с геномом бактерии, не вызывая ее лизиса, и передается по наследству от клетки к клетке в неограниченном числе поколений. Бактериальные клетки, содержащие в своей хромосоме профаг, называются лизогенными. Профаг в лизогенных бактериях самопроизвольно или под влиянием различных индуцированных агентов может переходить в вегетативный фаг. В результате такого превращения бактериальная клетка лизируется и продуцирует новые фаговые частицы. В ходе лизогенизации бактериальные клетки могут дополнительно приобретать новые признаки, детерминируемые геномом вируса. Такое явление — изменение свойств микроорганизмов под влиянием профага — называется фаговой, или лизогенной, конверсией (проявление вирус-инду-цироанной трансформации). Умеренные фаги, неспособные ни при каких условиях переходить из профага в вегетативный фаг (образовывать зрелые фаговые частицы), называются дефектными, чаще это происходит в результате нарушения стадии сборки вирусных частиц. Некоторые умеренные фаги называются трансдуцирующими, поскольку с их помощью осуществляется один из механизмов генетической рекомбинации у бактерий — трансдукции. Такие фаги могут использоваться, в частности, в генной инженерии в качестве векторов для получения рекомбинантных ДНК и/или приготовлении рекомбинантных (генно-инженерных) вакцин. 2. Специфичность фагов послужила основанием для их наименования по видовым и родовым названиям чувствительных к ним бактерий. Так, например, фаги, лизирующие стрептококки, называются стрептококковыми, лизирующие холерные вибрионы -холерные, стафилококки — стафилококковыми. По признаку специфичности выделяют поливалентные бактериофаги, лизирующие культуры одного семейства или рода бактерий, моновалентные (монофаги) — лизирующие культуры только одного вида бактерий, а также отличающиеся наиболее высокой специфичностью — типовые бактериофаги, способные вызывать лизис только определенных типов (вариантов) бактериальной культуры внутри вида бактерий. Наборы таких типоспецифических фагов используются для дифференцировки бактерий внутри вида — это метод фаготи-пирования бактерий. С помощью этого метода можно установить источник и пути передачи инфекционного заболевания, т. е. провести его эпидемиологический анализ, поскольку он позволяет сравнивать фаготипы (фаговары) чистых культур бактерий, выделенных в ходе бактериологического исследования от больного и от окружающих его лиц — возможных бактерионосителей. Фаги получают индукцией из лизогенных культур или из объектов, содержащих соответствующие бактерии, при культивировании на жидкой питательной среде с последующим выделением из культуральной жидкости путем фильтрования через бактериальные фильтры. Активность полученного (выделенного) фага определяют путем титрования или определения количества фаговых частиц в единице объема среды методом агаровых слоев по Трациа. Суть его состоит в том, что на газон чувствительной культуры (первый слой) наносят определенное разведение фага в полужидком агаре (второй слой). Каждая фаговая частица, размножаясь на бактериальном газоне, образует на поверхности выросшей культуры стерильное пятно («бляшка», или негативная колония фага). Таким образом, по количеству стерильных пятен можно подсчитать количество фаговых частиц в единице среды (титр фага). 3. Фаги могут применяться в качестве диагностических препаратов для установления рода и вида бактерий, выделенных в ходе бактериологических исследования. Однако чаще всего их используют для лечения и профилактики некоторых инфекционных заболеваний (перорально или местно). Активность фага выражают числом частиц фага, содержащихся в 1 мл или 1 таблетке. Лечебное и профилактическое действие фагов основано на их литической активности. Отличительной чертой бактериофагов как терапевтических средств является почти полное отсутствие у них побочного действия, что позволяет назначать эти препараты различным возрастным группам без каких-либо ограничений, и возможность назначения поливалентных бактериофагов до получения результатов бактериологического исследования. Препараты диагностических бактериофагов вводить категорически запрещается. В настоящее время в России для фаготерапии и фагопрофилактики производятся и используются: • поливалентный сальмонеллезный бактериофаг; • моновалентные бактериофаги — брюшнотифозный, дизентерийный, протейный, синегнойный, холерный, стафилококковый, стрептококковый, коли-фаг (кишечной палочки); • комбинированные препараты поливалентных бактериофагов — колипротейный, пиобактериофаг (включающий стафилококковые, стрептококковые, клебсиеллезные, эшерихиозные, протейные и синегнойные бактериофаги) и др. 1.3 Бактериофаги и бактериоциты Бактериофаги (вирусы бактерий) представляют собой живые фгенты, паразитирующие внутри бактериальных клеток и разрушающие их (вирулентные фаги). Специфические литические свойства вирулентных бактериофагов служат предпосылкой для их применения с лечебной, профилактической и дифференциально-диагностической целью. Развитие резистентных форм бактерий и осложнения, связанные с применением антибиотиков, и сульфаниламидных препаратов, привели к широкому спросу на так называемые «раневые» бактериофаги - стафилококковый, стрептококковый, коли, протейный, синегнойной палочки. Исходным материалом для производства бактериофагов служит так называемые «маточные фаги». Их получают путем пассажей фагов, выделенных из естественных субстратов (сточная вода, речная вода, почва, испражнения, гной сольных и т. л.) на чувствительных бактериях. Производство основано на заражении фагом бактериальной культуры, активно растущей в жидкой питательной среде. В результате размножения фаги разрушают бактериальные клетки и в большом количестве накапливаются в среде. Культуральная жидкость, освобожденная при помощи стерилизующих бактериальных фильтров от оставшихся микробных клеток и их фрагментов, представляет собой активный препарат бактериофага. Для консервации к полученному фильтру добавляют раствор хинозола, препятствующего размножению случайно попавших единичных бактерий. Наряду с жидкими выпускают сухой таблетированный бактериофаг, покрытый кислоустойчивой оболочкой, которая защищает ето от действия кислого желудочного сока. Бактериофаги применяют в основном перорально. Введенный в организм бактериофаг сохраняется в нем 5—7 дней, при необходимости более длительного действия препарат вводят повторно. Эффективность фаготерапии стандартными бактериофагами ограничена фагорезистентностью, которая довольно быстро появляется у многих штаммов бактерий при лечебном применении бактериофагов. В связи с этим рекомендован специальный подбор фагов к индивидуальным штаммам, выделяемых от больных (особенно при хронических инфекциях). Такие фаги называют адаптивными. Кроме лечения, бактериофаги применяют с диагностической целью для определения видов бактерий и их внутривидовой дифференциации (определение фаготипа или фаговара). При фаготипировании проводят совместное культивирование выделенного микроба с видовыми или типовыми фагами. Лизис исследуемой культуры считают положительным результатом. с такой же цельюпроводят типирование штаммов при помощи бактериоцинов. В этом случае определяют спектр чувствительости культуры к набору эталонных бактериоциногенных штаммов. Обратный прием—определение бактериоциногенности изучаемого штамма проводят со стандартной коллекцией индикаторных (чувствительных) штаммов. Эти диагностические приемы нашли реальное применение в эпидемиологических исследованиях при дизентерии (определение колицинотипа и колициногенотипа) 2)аллергические реакции в стоматологии Реакции гиперчувствительности первого типа ( I типа ). Реакции гиперчувствительности первого типа ( I типа ) обусловлены взаимодействием аллергена с IgE, сорбированным на мембранах тучных клеток и базофилов . Из-за цитофильных свойств (способности реагировать с поверхностью тучных клеток и базофилов) IgE также обозначают как реагины. Цитофильность IgE обусловлена наличием особых рецепторных структур в области Fc-фрагмента молекулы AT. Иначе способность связываться с собственными клетками называется гомоцитотропность. Именно это свойство выражено у IgE, тогда как другие AT (например, IgG) взаимодействуют и с чужеродными клетками (то есть они гетероцитотропны). Взаимодействие аллергена с IgE, сорбированным на тучных клетках и базофилах, приводит к высвобождению БАВ (гистамин, серотонин, эозинофильный и нейтрофильный хемотаксические факторы, протеазы). После взаимодействия синтезируются новые медиаторы — фактор активации тромбоцитов (PAF), медленно реагирующее вещество анафилаксии (лейкотриеиы В4, С4 D4) и другие продукты метаболизма фосфолипидов клеточных мембран (простагландины и тромбокса-ны). Медиаторы взаимодействуют с рецепторами мышечных, секреторных и многих других клеток, что приводит к сокращению гладкой мускулатуры (например, бронхов), повышению проницаемости сосудов и отёку. Клинически реакции первого типа проявляются преимущественно анафилаксией и атопическими заболеваниями. Реже наблюдают острую крапивницу и ангионевротические отёки. Развитие анафилаксии могут блокировать циркулирующие AT (IgM, IgG), способные, в отличие от сорбированного IgE, быстрее связывать Аг. Но обычно они образуются в незначительных количествах, что даёт аллергену возможность беспрепятственно достигать поверхности тучных клеток и базофилов с фиксированными на их поверхности IgE. Анафилактические реакции Анафилактические реакции иммуноспецифичны и развиваются после попадания аллергена, к которому организм был предварительно сенсибилизирован. Состояние гиперчувствительности формируется через 7-14 сут после первого контакта с Аг и сохраняется годами. Реакции могут быть Системные проявления в виде анафилактического шока могут развиваться после попадания аллергена практически любым путём (подкожно, парентерально, ингаляционно). Проявления местных реакций — атопии.Их развитие обусловлено образованием IgE в ответ на длительное воздействие аллергенов. Клинически проявляются ринитами, конъюнктивитами, бронхиальной астмой, отёком Квинке. Эффекторные клетки аллергического воспаления. 1 порядка: тучные клетки, 2 порядка: базофилы, макрофаги, нейтрофилы, тромбоциты. Ранняя фаза: - образование комплекса ИгЕ + Ат ( сенсибилизация) - фиксация комплекса на поверхность тучныхклеток с помощью рецепторов FcR -перекрестное сшивание аллергеном комплекса антитело – рецептор. -дегрануляция тучных клеток с высвобождением гистамина и синтезом лейкотриенов C4 и Д4, простогландина Д2, цитокинов ( ил-5, фно альфа), фактора активирующего тромбоциты. - ответ клеток окружающих тканей –сосудистых, эндотлиальных, гладких мышц , слизистых оболочек. Поздняя фаза: - цитокины привлекают из кровотока эозинофилы, нейтрофилы - факторы выделяемые эозинофилами (щелочной белок, лейкотриены) повреждают ткани и формируют гиперреактивность тканей,бронхов. Гиперчувствительность замедленного типа (ГЗТ)- клеточно- опосредованная гиперчувствительность или гиперчувствительность типа 4, связанная с наличием сенсибилизированных лимфоцитов. Эффекторными клетками являютсяТ- клетки ГЗТ, имеющиеCD4 рецепторы в отличие отCD8+ цитотоксических лимфоцитов. Сенсибилизацию Т- клеток ГЗТ могут вызывать агенты контактной аллергии (гаптены), антигены бактерий, вирусов, грибов, простейших. Близкие механизмы в организме вызывают антигены опухолей в противоопухолевом иммунитете, генетически чужеродные антигены донора- при трансплантационном иммунитете. Т- клетки ГЗТ распознают чужеродные антигены и секретируют гамма- интерферон и различные лимфокины, стимулируя цитотоксичность макрофагов, усиливая Т- и В- иммунный ответ, вызывая возникновение воспалительного процесса. Исторически ГЗТ выявлялась в кожных аллергических пробах (с туберкулином- туберкулиновая проба), выявляемых через 24 - 48 часов после внутрикожного введения антигена. Развитием ГЗТ на вводимый антиген отвечают только организмы с предшествующей сенсибилизацией этим антигеном. Классический пример инфекционной ГЗТ - образование инфекционной гранулемы(при бруцеллезе, туберкулезе, брюшном тифе и др.). Гистологически ГЗТ характеризуется инфильтрацией очага вначале нейтрофилами, затем лимфоцитами и макрофагами. Сенсибилизированные Т- клетки ГЗТ распознают гомологичные эпитопы, представленные на мембране дендритных клеток, а также секретируют медиаторы, активирующие макрофаги и привлекающие в очаг другие клетки воспаления. Активированные макрофаги и другие участвующие в ГЗТ клетки выделяют ряд биологически активных веществ, вызывающих воспаление и уничтожающих бактерии, опухолевые и другие чужеродные клетки -цитокины (ИЛ-1, ИЛ-6, альфа- фактор некроза опухолей), активные метаболиты кислорода, протеазы, лизоцим и лактоферрин. Контактная аллергия возникает, если антигенами являются низкомолекулярные органические и неорганические вещества, которые в организме соединяются с белками, образуя конъюга-ты. Конъюгированные соединения, выполняя роль гаптенов, вызывают сенсибилизацию. Контактная аллергия может возникать при длительном контакте с химическими веществами, в том числе фармацевтическими препаратами, красками, косметическими препаратами (губная помада, краска для ресниц). Проявляется контактная аллергия в виде всевозможных дерматитов, т. е. поражений поверхностных слоев кожи. Другие симптомы, которые может заметить пациент при слабо выраженных реакциях: металлический привкус во рту, парестезии или нарушение чувствительности, жжение и пощипывание языка, щек, слизистой оболочки, чувство «тяжести» и оскомины, горечи, сухость и т.д. Может ощущаться кисловато-солоноватый привкус, ощущение «электрического тока», обильное слюноотделение, першение в горле. Чаще всего краснеют или отекают мягкие ткани лица: щек, век, носа, губ, на них появляется сыпь. Нередким проявлением аллергии бывает стоматит (степень тяжести будет зависеть от выраженности реакции организма на раздражитель). 3)хламидии всё про них Таксономия: порядок Chlamydiales, семейство Chlamydaceae, род Chlamydia. Род представлен видами С.trachomatis, род Chlamydophilia. C.psittaci,C.pneumoniae. Болезни, вызываемые хламидиями, называют хламидиозами. Заболевания, вызываемые C. trachomatisuC. pneumoniae, — антропонозы. Орнитоз, возбудителем которого является С. psittaci, — зооантропонозная инфекция. Морфология хламидий: мелкие, грам «-» бактерии, шаровидной формы 0,2 -2мкм. Не образуют спор, нет жгутиков и капсулы. Клеточная стенка: 2-х слойная мембрана. Имеют гликолипиды. По Граму – красный цвет. Основной метод окраски – по Романовскому – Гимзе. 2 формы существования: элементарные тельца (неактивные инфекционные частицы, вне клетки окрашиваются в пурпурный цвет, хорошо контрастируют с синим цветом цитоплазмы клеток хозяина); ретикулярные тельца (внутри клеток, вегетативная форма- в синий цвет). Жизненный цикл: 1. Внеклеточная форма способная к проникновению в клетку – эндоцитоз. Инвагинация клетки ( накидывает часть оболочки) Блокируют слияние лизосомы с эндосомой Увеличение клетки в размерах – ретикулярные тельца Размножение клетки путем деления ( 36-42 часа созревания) Выходпосле разрыва клеточной стенки. Культивирование: Абсолютные внутриклеточные паразиты Можно размножать только в живых клетках. В желточном мешке развивающихся куриных эмбрионов, организме чувствительных животных и в культуре клеток Ферментативная активность: небольшая. Ферментируют пировиноградную кислоту, синтезируют липиды. Не способны синтезировать высокоэнергетические соединения. Антигенная структура: Антигены трех типов: родоспецифический термостабильный липополисахарид (в клеточной стенке). Выявляют с помощью РСК; видоспецифический антиген белковой природы (в наружной мембране). Обнаруживают с помощью РИФ; вариантоспецифический антиген белковой природы. Аг – 18 серотипов ( д – к урогенетальный хламидиоз) Факторы патогенности.С белками наружной мембраны хламидий связаны их адгезивные свойства. Эти адгезины обнаруживают только у элементарных телец - эпителиотропность. Хламидии образуют эндотоксин. У некоторых хламидий обнаружен белок теплового шока, способный вызывать аутоиммунные реакции, летальный токсин. Высокая адаптация в клетках хозяина, инвазия - макрофаги,моноциты. Контроль апоптоза ( клетка жива) , персистенция. Резистентность. Высокаяк различным факторам внешней среды. Устойчивы к низким температурам, высушиванию. Чувствительны к нагреванию. Эпидемиология – больной человк\ек – трансплацентарно, вертикально, контактно бытовой. При попадении в кровь –генерализованная форма – болезнь Рейтера, коньюктивит артрит. С. trachomatis - возбудитель заболеваний мочеполовой системы, глаз и респираторного тракта человека. |