Главная страница
Навигация по странице:

  • 73. ХАРАКТЕРИСТИКА МЕТОДА ШЛИФОВАНИЯ

  • 74 АБРАЗИВНО-ЖИДКОСТНАЯ ОТДЕЛКА

  • 1. Исходные материалы для металлургии руда, флюсы, огнеупоры, топливо пути повышения температуры горения металлургического топлива. Дайте определения и примеры химических формул


    Скачать 3.8 Mb.
    Название1. Исходные материалы для металлургии руда, флюсы, огнеупоры, топливо пути повышения температуры горения металлургического топлива. Дайте определения и примеры химических формул
    АнкорPodgotovka (1).docx
    Дата14.12.2017
    Размер3.8 Mb.
    Формат файлаdocx
    Имя файлаPodgotovka (1).docx
    ТипДокументы
    #11418
    страница11 из 12
    1   ...   4   5   6   7   8   9   10   11   12

    72 . ХАРАКТЕРИСТИКА МЕТОДА ШЛИФОВАНИЯ Шлифованием называют процессы обработки заготовок резанием режущим инструментом, рабочая часть которого содержит частицы абразивного материала. Такой режущий инструмент называют абразивным. Измельченный абразивный материал (абразивные зерна), твердость которого превышает твердость обрабатываемого материала и который способен в измельченном состоянии осуществлять обработку резанием, называют шлифовальным. Различают алмазные, эльборовые, электрокорундовые, карбидкремниевые и другие абразивные инструменты (шлифовальные круги). Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. Шлифовальные крути срезают стружки на очень больших скоростях - от 30 м/с и выше (порядка 125 м/с). Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность представляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость.

    Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристаллической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствие упругопластического деформирования материала обработанная поверхность упрочняется.

    Тепловое и силовое воздействия на обработанную поверхность приводят к структурным превращениям, изменениям физико-механических свойств. Проводят с подачей смазки.

    Шлифование применяют для чистовой и отделочной обработки деталей с высокой точностью. Для заготовок из закаленных сталей шлифование является одним из наиболее распространенных методов формообразования. С развитием малоотходной технологии доля обработки металлическим инструментом будет уменьшаться, а абразивным - увеличиваться.

    3. ОСНОВНЫЕ СХЕМЫ ШЛИФОВАНИЯ Формы деталей современных машин представляют собой сочетание наружных и внутренних плоских, круговых цилиндрических и круговых конических поверхностей. Другие поверхности встречаются реже. В соответствии с формами деталей машин наиболее распространены схемы шлифования, приведенные на рис. 6.79.

    Для всех технологических способов шлифовальной обработки главным движением резания является вращение круга. При плоском шлифовании возвратно-поступательное перемещение заготовки необходимо для обеспечения продольной подачи (рис. 6.79, а). Для обработки поверхности на всю ширину заготовка или круг должны иметь движение поперечной подачи. Это движение происходит прерывисто (периодически) при крайних положениях заготовки в конце продольного хода. Периодически происходит и движение подачи на глубину резания. Это перемещение осуществляется также в крайних положениях заготовки, но в конце поперечного хода.

    При круглом шлифовании (рис. 6.79, б) движение продольной подачи обеспечивается возвратно-поступательным перемещением заготовки. Вращение заготовки является движением круговой подачи.

    В автоматизированных шлифовальных станках цикл работы станка включает периодический вывод круга из зоны шлифования, его автоматическую правку и перемещение круга к изделию на величину снятого при правке слоя абразива.

    АБРАЗИВНЫЕ ИНСТРУМЕНТЫ

    Абразивные инструменты различают по геометрической форме и размерам, роду и сорту абразивного материала, зернистости или размерам абразивных зерен, связке или виду связующего вещества, твердости, структуре или строению круга.

    Зерна абразивных инструментов представляют собой искусственные или природные минералы и кристаллы. Абразивные материалы отличаются высокой твердостью, которая определяется по минералогической шкале. Зерна абразивов разделяют по крупности на группы и номера. Основная характеристика номера зернистости - количество и крупность его основной фракции. Вещество или совокупность веществ, применяемых для закрепления зерен шлифовального материала и наполнителя в абразивном инструменте, называют связкой. Наиболее широко применяют инструменты, изготовленные на керамической, бакелитовой или вулканитовой связке.

    Керамическую связку приготовляют из глины,' полевого шпата, кварца и других веществ путем их тонкого измельчения и смешения в определенных пропорциях. Бакелитовая связка состоит в основном из искусственной смолы - бакелита. Вулканитовая связка представляет собой искусственный каучук, подвергнутый вулканизации для превращения его в прочный, твердый эбонит. Под твердостью абразивного инструмента понимается способность связки сопротивляться вырыванию абразивных зерен с рабочей поверхности инструмента под действием внешних сил.

    Для шлифования заготовок из твердых сплавов и высокотвердых материалов успешно применяют алмазные круги. Алмазный круг состоит из корпуса и алмазоносного слоя. Корпус изготовляют из алюминия, пластмасс или стали. Толщина алмазоносного слоя у большинства кругов составляет 1,5 ... 3 мм. Чаще всего для изготовления таких инструментов используют синтетические алмазы. Удельный вес их применения превышает 80 %. Созданы новые материалы, которые практически не требуют правки и сохраняют свои свойства при нагреве до 1200 °С.

    На шлифовальные круги наносят обозначения, называемые маркировкой.

    12. ТЕХНОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ К КОНСТРУКЦИЯМ ОБРАБАТЫВАЕМЫХ ДЕТАЛЕЙ

    Для шлифования ступенчатых валов (рис. 6.90, а) предусматривают центровые отверстия, а для шлифования пустотелых валов - установочные фаски. Между шейками вала и торцами из-за непрерывного осыпания зерен круга получается переходная поверхность. В тех случаях,



    когда этого нельзя допустить по условиям работы детали, предусматривают технологические канавки для выхода шлифовального круга. Если необходимо оставить переходную поверхность, то на чертеже детали указывают ее максимально возможный радиус. Следует избегать конструирования валов с большой разностью диаметров отдельных участков. Точно обработанные, например, цилиндрические поверхности необходимо разделять введением проточек поверхности которых не требуется шлифовать.

    Шлифование отверстий малых диаметров связано с трудностями и должно назначаться в исключительных случаях.

    Плоские поверхности деталей должны быть расположены перпендикулярно или

    параллельно (рис. 6.90, в, ) основанию, на котором закрепляют заготовку. Шлифуемые поверхности желательно располагать в одной плоскости.

    73. ХАРАКТЕРИСТИКА МЕТОДА ШЛИФОВАНИЯ

    Шлифованием называют процессы обработки заготовок резанием режущим инструментом, рабочая часть которого содержит частицы абразивного материала. Такой режущий инструмент называют абразивным. Измельченный абразивный материал (абразивные зерна), твердость которого превышает твердость обрабатываемого материала и который способен в измельченном состоянии осуществлять обработку резанием, называют шлифовальным. различают алмазные, эльборовые, электрокорундовые, карбидкремниевые и другие абразивные инструменты (шлифовальные круги). Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. Шлифовальные круги срезают стружки на очень больших скоростях - от 30 м/с и выше (порядка 125 м/с). Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность представляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость. Часть зерен ориентирована так, что резать не может. Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристаллической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствие упругопластического деформирования материала обработанная поверхность упрочняется. Но этот эффект оказывается менее ощутимым, чем при обработке металлическим инструментом.

    Шлифование применяют для чистовой и отделочной обработки деталей с высокой точностью. Для заготовок из закаленных сталей шлифование является одним из наиболее распространенных методов формообразования. С развитием малоотходной технологии доля обработки металлическим инструментом будет уменьшаться, а абразивным - увеличиваться.

    Сведения о выпускаемых шлифовальных материалах, связках и области их применения приведены в справочной литературе.

    3. ОСНОВНЫЕСХЕМЫ ШЛИФОВАНИЯ

    Формы деталей современных машин представляют собой сочетание наружных и внутренних плоских, круговых цилиндрических и круговых конических поверхностей. Другие поверхности встречаются реже. В соответствии с формами деталей машин наиболее распространены схемы шлифования, приведенные на рис. 6.79.

    Для всех технологических способов шлифовальной обработки главным движением резания является вращение круга. При плоском шлифовании возвратно-поступательное перемещение заготовки необходимо для обеспечения продольной подачи (рис. 6.79, а). Для обработки поверхности на всю ширину заготовка или круг должны иметь движение поперечной подачи. Это движение происходит прерывисто (периодически) при крайних положениях заготовки в конце продольного хода. Периодически происходит и движение подачи на глубину резания. Это перемещение осуществляется также в крайних положениях заготовки, но в конце поперечного хода.

    При круглом шлифовании (рис. 6.79, б) движение продольной подачи обеспечивается возвратно-поступательным перемещением заготовки. Вращение заготовки является движением круговой подачи.

    В автоматизированных шлифовальных станках цикл работы станка включает периодический вывод круга из зоны шлифования, его автоматическую правку и перемещение круга к изделию на величину снятого при правке слоя абразива.

    7. ОБРАБОТКА ЗАГОТОВОК НА КРУГЛОШЛИФОВАЛЬНЫХ СТАНКАХ

    Конструкция круглошлифовальных станков и их компоновка подчиняются основным схемам шлифования. Кругло-шлифовальный станок состоит из следующих основных узлов (рис. 6.80). На универсальных станках каждую из бабок можно повернуть на определенный угол вокруг вертикальной оси и закрепить для последующей работы. Простые станки снабжены неповоротными бабками. У врезных станков отсутствует продольное движение подачи стола, а процесс шлифования ведется по всей длине заготовки широким шлифовальным кругом с движением поперечной подачи.
    Возвратно-поступательное перемещение стола для движения продольной подачи производят с помощью гидроцилиндра и поршня. Когда круг износится им



    Рис. 6.80. Круглошлифовальный станок

    диаметр его уменьшится, используют другую пару шкивов, и скорость движения резания увеличится.

    При шлифовании наружных цилиндрических и конических поверхностей обрабатываемая заготовка может быть установлена в центрах станка, цанге, патроне или специальном приспособлении.

    Скорость вращения заготовки при шлифовании в зависимости от ее диаметра назначается от 10 до 50 м/мин, скорость вращения шлифовального круга составляет у многих станков 30 м/с, а при использовании более прочных кругов достигает 50 ... 60 м/с. Продольная, поперечная подачи, глубина резания устанавливаются в зависимости от способов шлифования.

    Круглое шлифование цилиндрических поверхностей может быть выполнено по одной из четырех схем (рис. 6.81).

    При шлифовании с продольной подачей (рис. 6.81, а) заготовка вращается равномерно и совершает возвратно-поступательные движения. В конце каждого хода заготовки шлифовальный круг автоматически перемещается на $п, и при следующем ходе срезается новый слой металла определенной глубины, пока не будет достигнут необходимый размер детали

    Производительный способ обработки -врезное шлифование (рис. 6.81, б) - применяют при обработке жестких заготовок в тех случаях, когда ширина шлифуемого участка может быть перекрыта шириной шлифовального круга. Этот же метод используют при шлифовании фасонных поверхн¬стей и кольцевых канавок. Шлифовальный круг заправляют в соответствии с формой поверхности или канавки.

    Глубинным шлифованием (рис. 6.81, в) за один проход снимают слой материала на всю необходимую глубину. На шлифовальном круге формируют конический участок длиной 8 ... 12 мм. В ходе шлифования конический участок удаляет основную часть срезаемого слоя, а цилиндрический участок зачищает обработанную поверхность. Движение поперечной подачи отсутствует.

    Шлифование уступами (рис. 6.81, г) -это сочетание методов, представленных на рис. 6.81, а, б. Процесс шлифования состоит из двух этапов. На первом этапе шлифуют врезанием с движением подачи Ц, , передвигая периодически стол на

    0,8 ... 0,9 ширины круга (показано штриховой линией). На втором этапе делают несколько ходов с движением продольной подачи й5 для зачистки поверхности при выключенном движении подачи .

    При измерении размеров шлифуемых поверхностей приходится останавливать станок, что связано со значительной затратой времени. В современной практике широко используют контрольные устройства, измеряющие размеры обрабатываемых поверхностей в процессе шлифования -активный контроль.

    2. РЕЖИМ РЕЗАНИЯ. СИЛЫ РЕЗАНИЯ

    Для формообразования любой поверхности методом шлифования необходимы вращательное движение круга и относительное перемещение по одной из координатных осей (рис. 6.77). Перемещения вдоль осей могут быть заменены вращательным движением вокруг оси.

    Основные элементы режима резания -скорость главного движения резания, подача и глубина резания. Для рационального ведения процесса шлифования необходимо выбирать их оптимальные значения

    Движениями подач являются перемещения заготовки или инструмента вдоль или вокруг координатных осей. Выражения и размерности подач определяются схемами шлифования. Глубина резания (мм) определяется толщиной слоя материала, срезаемого за один проход



    Рис. 6.78. Сила резания при шлифовании

    Оптимальные режимы резания выбирают по справочным данным.

    Для расчета элементов шлифовальных станков, конструирования приспособлений для работы на них и оценки точности обработки необходимо знать силы резания.

    Мощность электродвигателя, приводящего во вращение шлифовальный круг, кВт,

    Шлифование является наиболее распространенным методом уменьшения шероховатости поверхностей. Качественные зависимости высотного параметра шероховатости от режима резания.

    74 АБРАЗИВНО-ЖИДКОСТНАЯ ОТДЕЛКА

    Отделка объемно-криволинейных, фасонных поверхностей обычными методами вызывает большие технологические трудности. Метод абразивно-жидкостной отделки позволяет решить задачу сравнительно просто. На обрабатываемую поверхность, имеющую следы предшествующей обработки, подают струи антикоррозионной жидкости со взвешенными частицами абразивного порошка (рис. 6.92, а). Водно-абразивная суспензия перемещается под давлением с большой скоростью. Частицы абразива ударяются о поверхность заготовки и сглаживают микронеровности. Интенсивность съема обрабатываемого материала регулируется зернистостью порошка, давлением струи и углом р. Изменяя скорость полета и размер свободных абразивных зерен, можно увеличить степень пластической деформации и шероховатость поверхности.

    В качестве абразива часто применяют электрокорунд. В суспензии содержится 30 ... 35 % абразива (по массе).

    Наибольший съем металла получается при угле Р = 45°

    ОБРАБОТКА ПЛАСТИЧЕСКИМ ДЕФОРМИРОВАНИЕМ

    Методы обработки без снятия стружки все больше применяют для деталей в связи с ужесточением эксплуатационных характеристик машин: высокой производительности, быстроходности, прочности, точности и др. Такой обработке подвергают предварительно подготовленные поверхности.

    Если формы заготовок приблизить к формам готовых деталей, то ответственные поверхности можно обрабатывать шлифованием и затем окончательно од ним из методов обработки без снятия стружки. Предоставляется возможность уменьшить количество отходов и упростить обработку.

    .ХОНИНГОВАНИЕ

    Хонингование применяют для получения поверхностей высокой точности и малой шероховатости, а также для создания специфического микропрофиля обработанной поверхности в виде сетки. Такой профиль необходим для удержания смазочного материала при работе машины (например, двигателя внутреннего сгорания) на поверхности ее деталей.

    Поверхность неподвижной заготовки обрабатывают мелкозернистыми абразивными брусками, которые закрепляют в хонинговальной головке (хоне). Бруски вращаются и одновременно перемещаются возвратно-поступательно вдоль оси обрабатываемого цилиндрического отверстия

    СУПЕРФИНИШ

    Суперфинишем в основном уменьшают шероховатость поверхности, оставшуюся от предыдущей обработки. При этом изменяются глубина и вид микронеровностей, обрабатываемые поверхности получают сетчатый рельеф. Поверхность становится чрезвычайно гладкой, что обеспечивает более благоприятные условия взаимодействия трущихся поверхностей.

    Поверхности обрабатывают абразивными брусками, устанавливаемыми в специальной головке. Для суперфиниша характерно колебательное движение брусков наряду с движением заготовки. Процесс резания происходит при давлении брусков (0,5 ... 3) 105 Па и в присутствии смазочного материала малой вязкости.

    Процесс характеризуется сравнительно малыми скоростями главного движения резания (0,08 ... 0,2 м/с).

    Важную роль играет смазочно-охлаждающая жидкость. Масляная пленка покрывает обрабатываемую поверхность, но наиболее крупные микровыступы (рис. 6.96, 6) прорывают ее и в первую очередь срезаются абразивом. Давление брусков на выступы оказывается большим. По мере дальнейшей обработки давление снижается, так как все большее число выступов прорывает масляную пленку.

    При обработке сталей лучших результатов достигают при применении брусков из электрокорунда, при обработке чугуна и цветных металлов - из карбида кремния. В большинстве случаев применяют бруски на керамической или бакелитовой связках. Большое влияние на ход процесса оказывает твердость брусков.

    Поверхности деталей машин, обработанные на металлорежущих станках, всегда имеют отклонения от правильных геометрических форм и заданных размеров.

    Эти отклонения могут быть устранены притиркой (абразивной доводкой). Таким методом могут быть обеспечены шероховатость поверхности до Кг = 0,05 ... 0,01 мкм, отклонения размеров и формы обработанных поверхностей до 0,05 ... 0,3 мкм. Доводка может быть осуществлена вручную и механическим способом.

    По сравнению с ручной доводкой механическая абразивная доводка позволяет повысить производительность в 2 ... 6 раз, и при этом обеспечивается стабильность выходных - эксплуатационных характеристик деталей агрегатов и машин (гидравлической, пневматической и топливной аппаратуры, зубчатых колес, шариков и колец подшипников качения и др.), выходных параметров кремниевых подложек, кварцевых кристаллических элементов, керамических опор гидроприборов и д . ПОЛИРОВАНИЕ ЗАГОТОВОК

    Полированием уменьшают шероховатость поверхности. Этим методом получают зеркальный блеск на ответственных частях деталей (дорожки качения подшипников) либо на деталях, применяемых для декоративных целей (облицовочные части автомобиля). Для этого используют полировальные пасты или абразивные зерна, смешанные со смазочным материалом. Эти материалы наносят на быстро-вращающиеся эластичные (например, фетровые) круги или колеблющиеся щетки. Хорошие результаты дает полирование быстродвижущимися бесконечными абразивными лентами (шкурками).
    1   ...   4   5   6   7   8   9   10   11   12


    написать администратору сайта