ответы на физиологию. 1. Современные представления о строении и функции мембран
Скачать 0.69 Mb.
|
82.Мышление. Межполушарная асимметрия в реализации мыслительных процессов. Мышление-психический процесс познавательной деятельности, позволяющий человеку структурировать внешнюю среду без непосредственного контакта с ней путем операций с мысленными образами и символами объектов. Мысли человека обладают относительной Стабильностью, не смотря на изменение сознания. Человек способен запоминать мысли. При этом он запоминает стабильные или существенные проявления какого-либо калейдоскопа событий. Поэтому человек запоминает наиболее существенные мысли, а не промежуточные результаты мыслительного процесса. Мысли человека характеризуются мультимодальностью. В мышлении используются различные модальности, т. е. Мысли человека могут включать словесные, зрительные и др. компоненты. В мозге человека мысли и обуславливающие их мыслительные процессы возникают последовательно в разное время. Мысли человека имеет ограниченную емкость. т. е. Только какая-то незначительная часть от общего кол-ва информации, которой обладает мозг, может быть представлена в мысли человека. Мыслительная деятельность обусловлена функциями ассоциативных областей коры головного мозга. Ассоциативные отделы КБП — место интеграции информации, поступающих из первичных и вторичных проекционных зон различных сенсорных систем. В этих областях текущая информация объединяется с таковой, содержащейся в долговременной памяти при участии Височной коры и Гиппокампа. Интеграция всех сенсорных сигналов со следами долговременной памяти дает возможность человеку оценивать положение тела и головы в пространстве. Ассоциативные отделы лобной КБП имеют особое значение в интерпретации явлений и событий. Благодаря двусторонним связям лобной коры и лимбической системы в систему оценки ситуации включаются эмоции. Лобная кора ответственна за выбор целей и прогнозирования событий, использование языка — основа многих мыслительных процессов человека — возможность только при совместной работе Лобных и Височных долей (зона Брока и зоны Вернике) Сохранение и манипулирование информацией — основной момент при процессах мышления человека. Эта функция мозга осуществляется на основе Эксплицитной рабочей памяти при участии Ассоциативной префронтальной коры. Указанные отделы КБП осуществляют умственные процессы контроля:внимания, выбора между альтернативными реакциями, репрезентацию и сохранение инструкций мыслительного задания. Мышление как процесс Распознавания информации осуществляется при участии Ассоциативных Височных и Лобных отделов КБП. Мышление как Поиск осуществляется при участии Задних Ассоциативных(теменно-затылочных) отделов коры мозга. Соответствие решения выработанному критерию реализуется при участии Ассоциативных Лобных, Височных и Лимбических отделов коры. 83. Архитектура целостного поведенческого акта (П.К. Анохин) Изучение феномена условного рефлекса развивается по нескольким направлениям. Первое - связано с анализом нейрофизиологической природы временной связи. Вместе с тем, не менее важным является второе направление, в рамках которого исследуется принципиальная архитектура, общая организация условнорефлекторного поведенческого акта. Как трактовалась общая организация условнорефлекторного акта на начальном этапе его изучения? Условнорефлекторный акт рассматривался с позиций классической рефлекторной теории. Достаточно обратить внимание на название, которое было предложено для обозначения нового приобретенного в ходе обучения поведенческого акта - условный рефлекс, под которым понимали ответную рефлекторную реакцию, возникающую при определенных условиях. Принципиальная схема условнорефлекторного поведенческого акта представлялась в соответствии с рис. 1. На схеме видно, что условный сигнал, взаимодействуя с некоторыми фоновыми раздражителями, запускает через ЦНС реакцию, проявляющуюся в активности периферических эффекторов 1, 2 и т. д. С точки зрения современных представлений такого рода подход к пониманию архитектуры условного рефлекса является упрощенным, скрывающим истинную сущность поведенческого акта как процесса физиологической саморегуляции. Анализ механизмов саморегуляции жизненно важных констант организма (кровяное давление, напряжение углекислого газа и кислорода в артериальной крови, температура внутренней среды, осмотическое давление плазмы крови, стабилизация центра тяжести в площади опоры и т. д.) показывает, что аппаратом саморегуляции выступает функциональная система (П. К. Анохин),принципиальная структура которой является универсальной. Центральным пунктом функциональной системы выступает конечный полезный результат, определяющий динамическую активность всех ее узлов вследствие непрерывной передачи информации по каналам обратной связи (обратной афферентации) в ЦНС. Рассмотрим архитектуру условнорефлекторного пищедобывательного поведенческого акта с позиций теории функциональной системы П. К. Анохина. Результаты многочисленных опытов, проведенных в лаборатории П.К. Анохина, позволяют заключить, что иницативная роль в формировании поведенческого акта принадлежит исходным потребностям организма. Применительно к условнорефлекторному пищедобывательному поведенческому акту речь идет о потребностях в питательных веществах, расходуемых в процессе жизнедеятельности, что приводит к уменьшению их концентрации в циркулирующей крови и, как следствие, к активации специализированного центра голода, расположенного в гипоталамической области. 84. Структурно-функциональная организация эндокринной системы. Классификация гормонов. Жизненный цикл гормонов. Основные свойства гормонов. Развивающийся мозг – гигантский полифункциональный эндокринный орган. Классификация гормонов. Белково-пептидные гормоны. В эту группу входят все тропные гормоны, либерины и статины, инсулин, глюкагон, кальцитонин, гастрин, секретин, холецистокинин, ангиотензин II, антидиуретический гормон (вазопрессин), паратиреоидный гормон и др. Эти гормоны образуются из белковых предшественников, называемых прогормонами. Как правило, сначала синтезируется препрогормон, из которого образуется прогормон, а затем гормон. Синтез прогормонов осуществляется на мембранах гранулярной эндоплазматической сети (шероховатый ретикулум) эндокринной клетки (рис 5.4). Большое значение для этих процессов имеет способность препрогормонов проникать через мембрану эндоплазматической сети в ее внутренние полости за счет того, что первые 20—25 аминокислотных остатков с N-конца у многих белковых предшественников являются одинаковыми, а на наружной мембране эндоплазматической сети имеются структуры, «узнающие» эту последовательность. В результате становится возможным внедрение молекулы препрогормона в липидный бислой мембраны и постепенное проникновение белкового предшественника во внутреннее пространство эндоплазматической сети. Везикулы с образующимся прогормоном переносятся затем в пластинчатый комплекс (комплекс Гольджи), где под действием мембранной протеиназы от молекулы прогормона отщепляется определенная часть аминокислотной цепи. В результате образуется гормон, который поступает в везикулы, содержащиеся в комплексе Гольджи. В дальнейшем эти везикулы сливаются с плазматической мембраной и высвобождаются во внеклеточное пространство. Различные этапы синтеза гормонов имеют неодинаковую продолжительность. Например, синтез молекулы проинсулина происходит за 1—2 мин. Транспорт проинсулина от эндоплазматической сети до комплекса Гольджи занимает 10—20 мин. «Созревание» везикул, несущих инсулин от комплекса Гольджи до плазматической мембраны, длится 1—2 ч. При действии глюкозы на β-клетки панкреатических островков (см. рис. 5.1) стимулируется главным образом слияние инсулиновых везикул с плазматическими мембранами, что и приводит к усиленной секреции инсулина, а скорость предыдущих этапов образования гормонов изменяется в меньшей степени. Концентрация других пептидных гормонов в крови также регулируется не влиянием на скорость их синтеза или внутриклеточного транспорта, а изменением скорости секреции. Во многом это обусловлено тем, что в секреторных гранулах содержится такое количество гормона, что его концентрация в крови может многократно повышаться без дополнительного синтеза. Поскольку многие полипептидные гормоны образуются из общего белкового предшественника, изменение синтеза одного из этих гормонов может приводить к параллельному изменению (ускорению или замедлению) синтеза ряда других гормонов. Так, из белка проопиокортина образуются кортикотропин и β-липотропин (схема 5.1), изβ-липотропина может образоваться еще несколько гормонов: γ-липотропин, β-меланоцитостимулирующий гормон, β-эндорфин, γ-эндорфин, α-эндорфин, метионин-энкефалин. При действии специфических протеиназ из кортикотропина могут образовываться α-меланоцитостимулирующий гормон и АКТГ-подобный пептид средней доли гипофиза. Благодаря сходству структур кортикотропина и α-меланоцитостимулирующего гормона последний имеет слабую кортикотропную активность. Кортикотропин обладает незначительной способностью усиливать пигментацию кожи. Концентрация белково-пептидных гормонов в крови обычно составляет 10-9—10-10 М. При стимуляции эндокринной железы концентрация соответствующего гормона возрастает в 2—5 раз. Период полураспада белково-пептидных гормонов в крови составляет 10—20 мин. Они разрушаются протеиназами клеток-мишеней, крови, печени и почек. Стероидные гормоны. В эту группу входят тестостерон, эстрадиол, эстрон, прогестерон, кортизол, альдостерон и др. Эти гормоны образуются из холестерина в корковом веществе надпочечников (кортикостероиды), а также в семенниках и яичниках (половые стероиды). В малом количестве половые стероиды могут образовываться в корковом веществе надпочечников, а кортикостероиды — в половых железах. Свободный холестерин поступает в митохондрии, где превращается в прегненолон, который затем попадает в эндоплазматическую сеть и после этого — в цитоплазму. В корковом веществе надпочечников синтез стероидных гормонов стимулируется кортикотропином, а в половых железах — лютеинизирующим гормоном (ЛГ). Эти гормоны ускоряют транспорт эфиров холестерина в эндокринные клетки и активируют митохондриальные ферменты, участвующие в образовании прегненолона. Кроме того, тропные гормоны активируют процессы окисления сахаров и жирных кислот в эндокринных клетках, что обеспечивает стероидогенез энергией и пластическим материалом. Кортикостероиды. Подразделяют на две группы. Глюкокортикоиды (типичный представитель — кортизол) индуцируют синтез ферментов глюконеогенеза в печени, препятствуют поглощению глюкозы мышцами и жировыми клетками, а также способствуют высвобождению из мышц молочной кислоты и аминокислот, тем самым ускоряя глюконеогенез в печени. Минералокортикоиды (типичный представитель — альдостерон) задерживают натрий в крови. Снижение концентрации натрия (см. раздел 5.2.5) в выделяемой моче, а также секретах слюнных и потовых желез приводит к меньшим потерям воды, так как вода движется через биологические мембраны в направлении высокой концентрации солей. Стимуляция синтеза глюкокортикоидов осуществляется через систему гипоталамус—гипофиз—надпочечники (см. рис. 5.2). Стресс (эмоциональное возбуждение, боль, холод и т. п.), тироксин, адреналин и инсулин стимулируют секрецию кортиколиберина из аксонов гипоталамуса. Этот гормон связывается с мембранными рецепторами аденогипофиза и вызывает секрецию кортикотропина, который с током крови попадает в надпочечники и стимулирует там образование глюкокортикоидов — гормонов, повышающих устойчивость организма к неблагоприятным воздействиям. Кортикотропин влияет слабо на синтез минералокортикоидов. Имеется дополнительный механизм регуляции синтеза минералокортикоидов, осуществляющийся через так называемую ренин-ангиотензиновую систему. Рецепторы, реагирующие на давление крови, локализованы в артериолах почек. При снижении давления крови эти рецепторы стимулируют секрецию ренина почками. Ренин является специфической эндопептидной, отщепляющей от α2-глобулина крови С-концевой декапептид, который называют «ангиотензин I». От ангиотензина I карбоксипептидаза (ангиотензинпревращающий фермент, расположенный на наружной поверхности эндотелия кровеносных сосудов) отщепляет два аминокислотных остатка и образует октапептид ангиотензин II — гормон, к которому на мембране клеток коркового вещества надпочечников имеются специальные рецепторы. Связываясь с этими рецепторами, ангиотензин II стимулирует образование альдостерона, который действует на дистальные канальцы почек, потовые железы, слизистую оболочку кишечника и увеличивает в них реабсорбцию ионов Na+, Сl- и НСОз-. В результате в крови повышается концентрация ионов Na+ и снижается концентрация ионов Сl- и К+. Эти эффекты альдостерона полностью блокируются ингибиторами синтеза белка. Половые стероиды. Андрогены (мужские половые гормоны) продуцируются интерстициальными клетками (гландулоцитами) семенников и в меньшем количестве яичниками и корковым веществом надпочечников. Основным андрогеном является тестостерон (см. раздел 5.2.7). Этот гормон может претерпевать изменения в клетке-мишени — превращаться в дигидротестостерон, который обладает большей активностью, чем тестостерон. Следует отметить, что ЛГ, который стимулирует начальные этапы биосинтеза стероидов в эндокринной железе, активирует также превращение тестостерона в дигидротестостерон в клетке-мишени, тем самым, усиливая андрогенные эффекты. Эстрогены (женские половые гормоны) в организме человека в основном представлены эстрадиолом. В клетках-мишенях они не метаболизируются. Действие андрогенов и эстрогенов направлено в основном на органы воспроизведения, проявление вторичных половых признаков, поведенческие реакции. Андрогенам свойственны также анаболические эффекты — усиление синтеза белка в мышцах, печени, почках. Эстрогены оказывают катаболическое влияние на скелетные мышцы, но стимулируют синтез белка в сердце и печени. Таким образом, основные эффекты половых гормонов опосредуются процессами индукции и репрессии синтеза белка. Стероидные гормоны легко проникают через клеточную мембрану, поэтому их секреция происходит параллельно с синтезом. Содержание стероидов в крови определяется соотношением скоростей их синтеза и распада. Регуляция этого содержания осуществляется главным образом путем изменения скорости синтеза. Тропные гормоны (кортикотропин, ЛГ и ангиотензин) стимулируют этот синтез. Устранение тропного влияния приводит к торможению синтеза стероидных гормонов. Действующие концентрации стероидных гормонов составляют 10-11—10-9 М. Период их полураспада равен 1/2—11/2 ч. Тиреоидные гормоны. В эту группу входят тироксин и трийодтиронин. Синтез этих гормонов осуществляется в щитовидной железе, в которой ионы йода окисляются при участии пероксидазы до йодиниум-иона, способного йодировать тиреоглобулин — тетрамерный белок, содержащий около 120 тирозинов. Йодирование тирозиновых остатков происходит при участии пероксида водорода и завершается образованием монойодтирозинов и дийодтирозинов. После этого происходит «сшивка» двух йодированных тирозинов. Эта окислительная реакция протекает с участием пероксидазы и завершается образованием в составе тиреоглобулина трийодтиронина и тироксина. Для того чтобы эти гормоны освободились из связи с белком, должен произойти протеолиз тиреоглобулина. При расщеплении одной молекулы этого белка образуется 2—5 молекул тироксина (Т4) и трийодтиронина (Тз), которые секретируются в молярных соотношениях, равных 4:1. Синтез и секреция тиреоидных гормонов находятся под контролем гипоталамо-гипофизарной системы. Тиреотропин активирует аденилатциклазу щитовидной железы, ускоряет активный транспорт йода, а также стимулирует рост эпителиальных клеток щитовидной железы. Эти клетки формируют фолликул, в полости которого происходит йодирование тирозина. Выделение Тз и Т4 осуществляется с помощью пиноцитоза. Частички коллоида окружаются мембраной эпителиальной клетки и поступают в цитоплазму в виде пиноцитозных пузырьков. При слиянии этих пузырьков с лизосомами эпителиальной клетки происходит расщепление тиреоглобулина, который составляет основную массу коллоида, что приводит к выделению Т3 и Т4. Тиреотропин и другие факторы, повышающие концентрацию цАМФ в щитовидной железе, стимулируют пиноцитоз коллоида, процесс образования и движения секреторных пузырьков. Таким образом, тиреотропин ускоряет не только биосинтез, но и секрецию Т3 и Т4. При повышении уровня Т3 и Т4 в крови подавляется секреция тиреолиберина и тиреотропина. Тиреоидные гормоны могут циркулировать в крови в неизменном виде в течение нескольких дней. Такая устойчивость гормонов объясняется, по-видимому, образованием прочной связи с Т4-свя-зывающими глобулинами и преальбуминами в плазме крови. Эти белки имеют в 10—100 раз большее сродство к Т4, чем к T3, поэтому в крови человека содержится 300—500 мкг Т4 и лишь 6—12 мкг Т3. Катехоламины. В эту группу входят адреналин, норадреналин и дофамин. Источником катехоламинов, как и тиреоидных гормонов, служит тирозин, однако при синтезе катехоламинов метаболизму подвергается свободная аминокислота. Синтез катехоламинов происходит в аксонах нервных клеток, запасание — в синаптических пузырьках. Катехоламины, образующиеся в мозговом веществе надпочечников, выделяются в кровь, а не в синаптическую щель, т. е. являются типичными гормонами. В некоторых клетках синтез катехоламинов заканчивается образованием дофамина, а адреналин и норадреналин образуются в меньшем количестве. Такие клетки есть в составе гипоталамуса. Предполагают, что пролактостатином, т. е. гормоном гипоталамуса, подавляющим секрецию пролактина, является дофамин. Известны и другие структуры мозга (например, стриарная система), которые находятся под влиянием дофамина и нечувствительны, например, к адреналину. В симпатических нервных волокнах дофамин не накапливается, а быстро превращается в норадреналин, который хранится в синаптических пузырьках. Адреналина в этих волокнах значительно меньше, чем норадреналина. В мозговом слое надпочечников биосинтез завершается образованием адреналина, поэтому норадреналина образуется в 4—6 раз меньше, а дофамина сохраняются лишь следы. Синтез катехоламинов в мозговом веществе надпочечников стимулируется нервными импульсами, поступающими по чревному симпатическому нерву. Выделяющийся в синапсах ацетилхолин взаимодействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря существованию нервно-рефлекторных связей надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражители, гипоксию, мышечную нагрузку, охлаждение и т. д. Существуют и гуморальные пути регуляции активности клеток мозгового вещества надпочечников: синтез и выделение катехоламинов могут возрастать под действием инсулина, глюкокортикоидов, при гипогликемии. Катехоламины подавляют как собственный синтез, так и выделение. В адренергических синапсах на пресинаптической мембране есть α-адренергические рецепторы. При выбросе катехоламинов в синапс эти рецепторы активируются и начинают оказывать ингибирующее влияние на секрецию катехоламинов. Аутоингибирование секреции обнаружено практически во всех тканях, секретирующих эти гормоны или нейромедиаторы. В отличие от холинергических синапсов, постсинаптическая мембрана которых содержит как рецепторы, так и ацетилхолинэстеразу, разрушающую медиатор, удаление катехоламинов из синапса происходит в результате обратного захвата медиатора нервными окончаниями. Поступающие в нервное окончание из синапса катехоламины вновь концентрируются в специальных гранулах и могут повторно участвовать в синаптической передаче. Определенное количество катехоламинов может диффундировать из синапсов в межклеточное пространство, а затем в кровь, поэтому содержание норадреналина в крови больше, чем адреналина, несмотря на то что мозговое вещество надпочечников секретирует в кровь адреналин, а норадреналин секретируется преимущественно в синапсах. При стрессе содержание катехоламинов повышается в 4—8 раз. Период полураспада катехоламинов в крови равен 1—3 мин. Катехоламины могут инактивироваться в тканях-мишенях, печени и почках. Решающее значение в этом процессе играют два фермента — моноаминоксидаза, расположенная на внутренней мембране митохондрий, и катехол-О-метилтрансфераза, цитозольный фермент. Эйкозаноиды. В эту группу входят простагландины, тромбоксаны и лейкотриены. Эйкозаноиды называют гормоноподобными веществами, так как они могут оказывать только местное действие, сохраняясь в крови в течение нескольких секунд. Образуются во всех органах и тканях практически всеми типами клеток. Биосинтез большинства эйкозаноидов начинается с отщепления арахидоновой кислоты от мембранного фосфолипида или диацил-глицерина в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему, функционирующую преимущественно на мембранах эндоплазматической сети. Образующиеся эйкозаноиды легко проникают через плазматическую мембрану клетки, а затем через межклеточное пространство переносятся на соседние клетки или выходят в кровь и лимфу. Скорость синтеза эйкозаноидов увеличивается под влиянием гормонов и нейромедиаторов, активирующих аденилатциклазу или повышающих концентрацию ионов Са2+ в клетке. Наиболее интенсивно образование простагландинов происходит в семенниках и яичниках. Простагландины могут активировать аденилатциклазу, тромбоксаны увеличивают активность фосфоинозитидного обмена, а лейкотриены повышают проницаемость мембран для ионов Са2+. Поскольку цАМФ и ионы Са2+ стимулируют синтез эйкозаноидов, замыкается положительная обратная связь в синтезе этих специфических регуляторов. Во многих тканях кортизол тормозит освобождение арахидоновой кислоты, что приводит к подавлению образования эйкозаноидов, и тем самым оказывает противовоспалительное действие. Простагландин E1 является мощным пирогеном. Подавлением синтеза этого простагландина объясняют терапевтическое действие аспирина. Период полураспада эйкозаноидов составляет 1—20 с. Ферменты, инактивирующие их, имеются практически во всех тканях, но наибольшее их количество содержится в легких. Жизненный цикл гормонов. Основные свойства гормонов. Включение секреции гормона в ответ на стимуляцию и продолжительность секреции различных гормонов. Некоторые гормоны, такие как адреналин и норадреналин, секретируются в течение нескольких секунд после стимуляции желез и могут продемонстрировать полную активность в течение следующих нескольких секунд или минут. Для полного проявления активности других гормонов, таких как тироксин или гормон роста, могут потребоваться месяцы. Таким образом, каждый гормон имеет собственные характеристики начала и продолжительности активности и приспособлен для обеспечения своей специфической регуляторной функции. Концентрация гормонов в циркулирующей крови и скорость секреции гормонов. Концентрации гормонов, необходимые для большинства обменных процессов и эндокринной функции, чрезвычайно малы. Концентрации гормонов в крови варьируют от I пикограмма (КГ12 г) до нескольких микрограммов (IО-3 г) в I мл крови. Скорость секреции чрезвычайно мала, обычно она исчисляется несколькими микрограммами в сутки. Как мы увидим в следующих главах, в тканях-мишенях представлены высокоспециализированные механизмы, позволяющие даже такому ничтожному количеству гормона осуществлять мощный контроль физиологических функций. Обратная связь — способ регуляции гормональной секреции. Отрицательная обратная связь предотвращает чрезмерную активность гормональных систем. Концентрации многих гормонов в плазме колеблются в течение суток, но продукция всех изученных к настоящему моменту гормонов тщательно контролируется. В большинстве случаев эта регуляция обеспечивается благодаря механизму отрицательной обратной связи, что гарантирует должный уровень гормональной активности в тканях-мишенях. После того как стимул вызвал высвобождение гормона, ответная реакция или продукты реакции, возникшей в результате действия гормона, создают тенденцию к подавлению дальнейшего высвобождения гормона. Иными словами, гормон (или один из продуктов его активности) оказывает ингибирующее влияние по принципу отрицательной обратной связи, предотвращая гиперсекрецию или гиперактивность тканей-мишеней. Часто контролируется не вариабельность скорости секреции самого гормона, а степень активности ткани-мишени, поэтому только в случае, когда активность ткани-мишени достигает соответствующего уровня, появляется ответный сигнал к эндокринной железе, становящийся достаточно мощным для снижения дальнейшей продукции гормона. Регуляция продукции гормона по принципу отрицательной обратной связи может быть на любых уровнях, включая генетический аппарат, опосредованный уровнями трансляции и транскрипции гормонального синтеза, а также на этапах транспортировки и высвобождения гормона из хранилищ. Всплеск продукции гормонов может обеспечиваться положительной обратной связью. В редких случаях осуществляется положительная обратная связь, когда биологическое действие гормона вызывает его дополнительную секрецию. Примером может быть всплеск продукции лютеинизирующего гормона, который возникает в результате стимулирующего влияния эстрогенов на переднюю долю гипофиза перед овуляцией. Секретируемый ЛГ действует на яичники, стимулируя дополнительную продукцию эстрогенов, которые, в свою очередь, вызывают увеличение секреции ЛГ. Co временем, когда ЛГ достигнет соответствующей концентрации, установится обычный контроль по принципу отрицательной обратной связи. Существуют циклические колебания концентрации гормона. Сезонные и возрастные изменения, стадии развития, суточные циклы и сон приводят к преобладанию положительной или отрицательной обратной связи, регулирующей продукцию гормона и колебания его высвобождения. Например, продукция гормона роста заметно увеличивается во время ранних периодов сна и снижается на поздних стадиях. Во многих случаях циклические колебания гормональной секреции являются следствием изменения активности нейрональных систем, контролирующих высвобождение гормона. Транспорт гормонов кровью Водорастворимые гормоны (пептиды и катехоламины) растворимы в плазме и транспортируются от мест их синтеза к тканям-мишеням, где гормоны диффундируют из капилляров в интерстициальную жидкость и направляются к клеткам-мишеням. Стероидные и тиреоидные гормоны, напротив, циркулируют в крови, будучи связанными с белками плазмы (например, более 99% тироксина). Обычно не более 10% стероидных и тиреоидных гормонов присутствуют в плазме в свободном виде. Конъюгированные с белками гормоны не могут диффундировать через стенки капилляров и не образуют, таким образом, активной формы до тех пор, пока не состоится их разобщение, что предупреждает гиперстимуляцию клеток-мишеней. Относительно большое количество гормонов в связанной форме являются резервом, из которого восстанавливается концентрация свободных гормонов, когда они связываются с рецепторами или покидают кровеносное русло. Очищение крови от гормонов. Увеличивать или уменьшать концентрацию гормона в крови могут два фактора: (I) скорость секреции гормона; (2) скорость извлечения гормона из крови, которую называют скоростью метаболического очищения. Она обычно равна количеству миллилитров плазмы крови, освобождающейся от гормона за минуту. Для определения этого показателя необходимо знать: (I) скорость извлечения гормона из плазмы за минуту; (2) концентрацию гормона в миллилитре плазмы крови. Скорость метаболического очищения определяют по следующей формуле: Скорость метаболического очищения == Скорость извлечения гормона из плазмы / Концентрация гормона в миллилитре плазмы.Обычно процедура определения скорости метаболического очищения следующая. Гормон снабжают радиоактивной меткой, затем вводят с постоянной скоростью в кровоток до тех пор, пока его концентрация не установится на постоянном уровне. С момента установления постоянного уровня концентрации наступает равновесие между скоростью введения гормона в кровь со скоростью его извлечения из плазмы. В это время концентрацию гормона определяют с помощью стандартных методов измерения концентрации радиоактивных веществ. Затем, используя приведенную формулу, можно рассчитать скорость метаболического очищения плазмы от гормона. Плазма очищается от гормона различными путями, включая: (I) метаболическое разрушение гормона в тканях; (2) связывание гормона в тканях; (3) экскрецию гормона печенью с желчью; (4) экскрецию почками с мочой. Снижение скорости метаболического очищения от данного гормона может стать причиной чрезмерного повышения его концентрации в жидких средах организма. Например, болезни печени могут стать причиной подобных состояний применительно к стероидным гормонам, т.к. они экскретируются с желчью именно печенью. Иногда гормоны разрушаются клетками мишенями. Они поглощаются клетками путем эндоцитоза в виде гормон-рецепторного комплекса, затем гормон метаболизируется клеткой, а рецепторы обычно встраиваются обратно в ее мембрану. Большинство гормонов-пептидов и катехоламинов водорастворимы и свободно циркулируют в крови. Обычно они разрушаются ферментами крови и тканей и быстро экскретируются почками и печенью, поэтому присутствуют в крови в течение короткого промежутка времени. Например, период полувыведения ангиотензина II, циркулирующего в крови, составляет менее I мин. Гормоны, связанные с белками плазмы, покидают кровоток существенно медленнее и могут сохраняться в нем на протяжении нескольких часов и даже дней. Так, период полувыведения кортикостероидов составляет от 20 до 100 мин, в то время как связанные с белками крови гормоны щитовидной железы имеют период полувыведения от I до б сут. |