ответы на физиологию. 1. Современные представления о строении и функции мембран
Скачать 0.69 Mb.
|
92. Гормоны паращитовидных желез. Паращитовидные железы ( у человека их в среднем 4) эпителиального происхождения, кровоснабжаются из щитовидных артерий и, так же как щитовидная железа, иннервируются симпатическими и парасимпатическими волокнами. Гормон – паратирин – является кальцийрегулирующим гормоном, повышающим уровень кальция в плазме крови, в связи с чем его называют гиперкальциемическим гормоном. Регуляция секреции паратирина происходит по механизму отрицательной обратной связи уровнем ионизированного кальция плазмы крови. Низкая концентрация кальция стимулирует секрецию паратирина при одновременном повышении уровня цАМФ в клетках. Стимулируют продукцию паратирина и симпатические влияния на коетки паращитовидных желез через бета-адренорецепторы, также приводящие к возрастанию в клетках железы содержания цАМФ. Подавляют секрецию паратирина высокий уровень кальция в крови и почечный гормон кальцитриол. Основные эффекты паратирина проявляются со стороны органов-мишеней гормона – костной ткани, почек и ЖКТ. Реализация действия паратирина осуществляется через цАМФ, и повышение уровня этого вторичного посредника в моче является важным диагностическим критерием избыточной секреции паратирина. Эффект гормона на костную ткань обусловлен стимуляцией активности и увеличением количества остеокластов, резорбирующих кость. Под влиянием паратирина в костной ткани накапливаются лимонная и молочная кислоты, вызывающие местный ацидоз. Кислая реакция среды в костной ткани тормозит активность щелочной фосфатазы – фермента, необходимого для образования основного минерального вещества кости – фосфорнокислого кальция. Избыток лимонной и молочной кислот ведет к образованию растворимых в воде солей кальция – цитрата и лактата, вымыванию их в кровь, что приводит к деминерализации кости. Избыток цитрата выводится с мочой, что является важным диагностическим признаком повышенного уровня секреции паратирина. В почках гормон снижает реабсорбцию кальция в проксимальных канальцах, что предотвращает потери кальция с мочой и способствует гиперкальциемии. Реабсорбция фосфата в почках под влиянием паратирина угнетается, это приводит к фосфатурии и снижению содержания фосфата в крови – гипофосфатемии. Почечные эффекты паратирина проявляются также в диуретическом и натрийуретическом действии, угнетении канальцевой реабсорбции воды, снижении эффективности действия на канальцы вазопрессина. В кишечнике паратирин прямо, но главным образом опосредованно через кальцитриол, стимулирует всасывание кальция, что также способствует гиперкальциемии. Пратирин повышает поступление кальция во внутриклеточную среду и транспорт иона из цитозоля во внутриклеточные депо, увеличивает удаление свободного кальция из клеток. Благодаря этому изменяется возбудимость и реактивность клеток к нейрогенным и гуморальным регуляторным стимулам. Паратирин вызывает повышение образования в почках кальцитриола, стимулирует секрецию соляной кислоты и пепсина в желудке. Повышенная секреция паратирина при гиперплазии или аденоме околощитовидных желез сопровождается деминерализацией скелета с деформацией длинных трубчатых костей, образованием почечных камней, мышечной слабостью, депрессией, нарушениями памяти и концентрации внимания. 93. Энлокринная функция поджелудочной железы. Эндокринную функцию в поджелудочной железе выполняют скопления клеток эпителиального происхождения, получившие названия островков Лангерганса и составляющие всего 1-2 % массы поджелудочной железы – экзокринного органа, образующего панкреатический пищеварительный сок. Количество островков в железе взрослого человека очень велико и составляет от 200 тысяч до полутора миллионов. В островках различают несколько типов клеток, продуцирующих гормоны: альфа-клетки образуют глюкагон, бета-клетки – инсулин, дельта-клетки – соматостатин, джи-клетки – гастрин и РР- или F-клетки – панкреатический полипептид. Помимо инсулина в бета-клетках синтезируется гормон амилин, обладающий противоположными инсулину эффектами. Кровоснабжение островков более интенсивно, чем основной паренхимы железы. Иннервация осуществляется постганглионарными симпатическими и парасимпатическими нервами, причем среди клеток островков расположены нервные клетки, образующие нейроинсулярные комплексы. Инсулин синтезируется в эндоплазматическом ретикулуме бета0клеток вначале в виде пре-проинсклина, затем отнего отщепляется 23-аминокислотная цепь и остающаяся молекула носит название проинсулина. В комплексе Гольджи проинсулин упаковывается в гранулы, в них осуществляется расщепление проинсулина на инсулин и соединительный пептид (С-пептид). В гранулах инсулин депонируется в виде полимера и частично в комплексе с цинком. Количество депонированного в гранулах инсулина почти в 10 раз превышает суточную потребность в гормоне. Секреция инсулина происходит путем экзоцитоза гранул, при этом в кровь поступает эквимолярное количество инсулина и С-пептида. Определение содержания последнего в крови является важным диагностическим тестом оценки секреторной способности β-клеток. Секреция инсулина является кальцийзависимым процессом. Под влиянием стимула – повышенного уровня глюкозы в крови – мембрана бета-клеток деполяризуется, ионы кальция входят в клетки, что запускает процесс сокращения внутриклеточной микротубулярной системы и перемещение гранул к плазматической мембране с последующим их экзоцитозом. Секреторная функция разных клеток островков взаимосвязана, зависит от эффектов образуемых ими гормонов, в связи с чем островки рассматриваются как своеобразный «мини-орган». Выделяют 2 вида секреции инсулина: базальную и стимулированную. Базальная секреция инсулина осуществляется постоянно, даже при голодании и уровне глюкозы крови ниже 4 ммоль/л. Стимулированная секреция инсулина представляет собой ответ бета-клеток островков на повышенный уровень D-глюкозы в притекающей к бета-клеткам крови. Под влиянием глюкозы активируется энергетический рецептор бета-клеток, что увеличивает транспорт в клетку ионов кальция, активирует аденилатциклазу и пул (фонд) цАМФ. Через эти посредники глюкоза стимулирует выброс инсулина в кровь из специфических секреторных гранул. Усиливает ответ бета-клеток на действие глюкозы гормон двенадцатиперстной кишки — желудочный ингибиторный пептид (ЖИП). В регуляции секреции инсулина определенную роль играет и вегетативная нервная система. Блуждающий нерв и ацетилхолин стимулируют секрецию инсулина, а симпатические нервы и норадреналин через альфа-адренорецепторы подавляют секрецию инсулина и стимулируют выброс глюкагона. Специфическим ингибитором продукции инсулина является гормон дельта-клеток островков — соматостатин. Этот гормон образуется и в кишечнике, где тормозит всасывание глюкозы и тем самым уменьшает ответную реакцию бета-клеток на глюкозный стимул. Образование в поджелудочной железе и кишечнике пептидов, аналогичных мозговым, например соматостатина, подтверждает существование в организме единой APUD-системы. Секреция глюкагона стимулируется снижением уровня глюкозы в крови, гормонами желудочно-кишечного тракта (ЖИП гастрин, секретин, холецистокинин-панкреозимин) и при уменьшении в крови ионов Са2+. Подавляют секрецию глюкагона инсулин, соматостатин, глюкоза крови и Са2+. В эндокринных клетках кишечника образуется глюкагоноподобный пептид-1, стимулирующий всасывание глюкозы и секрецию инсулина после приема пищи. Клетки желудочно-кишечного тракта, продуцирующие гормоны, являются своеобразными «приборами раннего оповещения» клеток панкреатических островков о поступлении пищевых веществ в организм, требующих для утилизации и распределения участия панкреатических гормонов. Эта функциональная взаимосвязь нашла отражение в термине «гастро-энтеро-панкреатическая система». Физиологические эффекты инсулина Действие инсулина на клетки-мишени начинается после его связывания со специфическими димерными мембранными рецепторами, при этом внутриклеточный домен рецептора обладает тирозинкиназной активностью. Инсулин-рецепторный комплекс не только передает сигнал внутрь клетки, но и частично путем эндоцитоза поступит внутрь клетки к лизосомам. Под влиянием лизосомальной протеазы инсулин отщепляется от рецептора, при этом последний либо разрушается, либо возвращается к мембране и вновь встраивается в нее. Многократное перемещение рецептора от мембраны к лизосомам и обратно к мембране носит название рециклизация рецептора. Процесс рециклизации важен для регуляции количества инсулиновых рецепторов, в частности обеспечения обратной зависимости между концентрацией инсулина и количеством мембранных рецепторов к нему. Образование инсулин-рецепторного комплекса активирует тирозинкиназу, запускающую процессы фосфорилирования внутриклеточных белков. Происходящее при этом аутофосфорилирование рецептора ведет к усилению первичного сигнала. Инсулин-рецепторный комплекс вызывает активирование фосфолипазы С, образование вторичных посредников инозитолтрифосфата и диацилглицерола, активацию протеинкиназы С, ингибирование цАМФ. Участие нескольких систем вторичных посредников объясняет многообразие и различия эффектов инсулина в разных тканях. Инсулин оказывает влияние на все виды обмена веществ, способствует анаболическим процессам, увеличивая синтез гликогена, жиров и белков, тормозя эффекты многочисленных контринсулярных гормонов (глюкагона, катехоламинов, глюкокортикоидов и соматотропина). Все эффекты инсулина по скорости их реализации подразделяют на 4 группы: очень быстрые (через несколько секунд) — гиперполяризация мембран клеток (за исключением гепатоцитов), повышение проницаемости для глюкозы, активация Na+-K+-АТФазы, входа К+ и откачивания Na+ , подавление Са2+-насоса и задержка Са2+; быстрые эффекты (в течение нескольких минут) — активация и торможение различных ферментов, подавляющих катаболизм и усиливающих анаболические процессы; медленные процессы (в течение нескольких часов) — повышенное поглощение аминокислот, изменение синтеза РНК и белков-ферментов; очень медленные эффекты (от часов до суток) — активация митогенеза и размножения клеток. Важнейшим эффектом инсулина в организме является увеличение в 20—50 раз транспорта глюкозы через мембраны мышечных и жировых клеток путем облегченной диффузии по градиенту концентрации с помощью чувствительных к гормон) мембранных белковых переносчиков, называемых ГЛЮТ. В мембранах разных видов клеток выявлены 6 типов ГЛЮТ, но только один из них — ГЛЮТ-4 — является инсулинозависимым и находится в мембранах клеток скелетных мышц, миокарда, жировой ткани. Инсулин влияет на угле водный обмен, что проявляется: 1) активацией утилизации глюкозы клетками, 2) усилением процессов фосфорилирования; 3) подавлением распад; и стимуляцией синтеза гликогена; 4) угнетением глюконеогенеза; 5) активацией процессов гликолиза; 6) гипогликемией. Действие инсулина на белковый обмен состоит в: 1) повышении проницаемости мембран для аминокислот; 2) усилении синтеза иРНК; 3) активации в печени синтеза aминокислот; 4) повышении синтеза и подавлении распада белка. Основные эффекты инсулина на липидный обмен: • стимуляция синтеза свободных жирных кислот из глюкозы; • стимуляция синтеза липопротеиновой липазы в клетках эндотелия сосудов и благодаря этому активация гидролиза связанных с липопротеинами крови триглицеридов и поступления жирных кислот в клетки жировой ткани; • стимуляция синтеза триглицеридов; • подавление распада жира; • активация окисления кетоновых тел в печени. Благодаря влиянию на клеточную мембрану инсулин поддерживает высокую внутриклеточную концентрацию ионов калия, что необходимо для обеспечения нормальной в возбудимости клеток. Широкий спектр метаболических эффектов инсулина в организме свидетельствует о том, что гормон необходим для осуществления функционирования всех тканей, органов и физиологических систем, реализации эмоциональных и поведенческих актов, поддержания гомеостазиса, осуществления механизмов приспособления и защиты организма от неблагоприятных факторов среды. Недостаток инсулина (относительный дефицит по сравнению с уровнем контринсулярных гормонов, прежде всего глюкагона) приводит к сахарному диабету. Избыток инсулина в крови, например при передозировке, вызывает гипогликемию с резкими нарушениями функций центральной нервной системы, использующей глюкозу как основной источник энергии независимо от инсулина. Глюкагон является мощным контринсулярным гормоном и его эффекты реализуются в тканях через систему вторичного посредника аденилатциклаза—цАМФ. В отличие от инсулина, глюкагон повышает уровень сахара крови, в связи с чем его называют гипергликемическим гормоном. Основные эффекты глюкагона проявляются в следующих сдвигах метаболизма в организме: • активация гликогенолиза в печени и мышцах; • активация глюконеогенеза; • активация липолиза и подавление синтеза жира в адипоцитах; • повышение синтеза кетоновых тел в печени и угнетение их окисления; • стимуляция катаболизма белков в клетках тканей, прежде всего печени, и увеличение синтеза в ней мочевины. Образующиеся в островках Лангерганса гастрин и панкреатический полипептид основную роль играют в регуляции процессов пищеварения, их эффекты и физиологическая роль рассмотрены в соответствующей главе. 94. Гормоны коркового вещества надпочечников. В надпочечниках выделяют корковое и мозговое вещество. Корковое вещество включает клубочковую, пучковую и сетчатую зоны. В клубочковой зоне происходит синтез минералокортикоидов, основным представителем которых является альдостерон. В пучковой зоне синтезируются глюкокортикоиды. В сетчатой зоне вырабатывается небольшое количество половых гормонов. Алъдостерон усиливает в дистальных канальцах почек реабсорбцию Na+; одновременно увеличивая при этом выведение с мочой ионов К+. Аналогичное усиление натрий-калиевого обмена происходит в потовых и слюнных железах, в кишечнике. Это приводит к изменению электролитного состава плазмы крови (гипернатриемия и гипокалиемия). Кроме того, под влиянием альдостерона резко возрастает почечная реабсорбция воды, которая всасывается пассивно по осмотическому градиенту, создаваемому Na+. Это приводит к существенным изменениям гемодинамики — увеличивается ОЦК, возрастает ДД. Вследствие усиленного обратного всасывания воды уменьшается диурез. При повышенной секреции альдостерона увеличивается склонность к отекам, что обусловлено задержкой в организме натрия и воды, повышением гидростатического давления крови в капиллярах и в связи с этим — усиленной экссудацией жидкости из просвета сосудов в ткани. За счет усиления процессов экссудации и отечности тканей альдостерон способствует развитию воспалительной реакции (провоспалительный гормон). Под влиянием альдостерона увеличивается также секреция ионов Н+ в канальцевом аппарате почек, что приводит к снижен ию их концентрации во внеклеточной жидкости и изменению кислотно-основного состояния (алкалоз). Снижение секреции альдостерона вызывает усиленное выведение натрия и воды с мочой, что приводит к дегидратации тканей, снижению ОЦК и уровня АД. В результате в организме возникают явления циркуляторного шока. Концентрация калия в крови при этом, наоборот, увеличивается, что является причиной нарушения электрической стабильности сердца и развития сердечных аритмий. Основным фактором, регулирующим секрецию альдостерона, является функционирование ренин-ангиотензин-альдостероновой системы. При снижении уровня АД наблюдается возбуждение симпатической части автономной нервной системы, что приводит к сужению почечных сосудов. Уменьшение почечного кровотока способствует усиленной выработке ренина в юкстагломерулярных нефронах почек. Ренин является ферментом, который действует на плазменный а2-глобулин ангиотензиноген, превращая его в ангиотензин I. Образовавшийся ангиотензин I затем превращается в ангиотензии II, который увеличивает секрецию альдостерона. Выработка альдостерона может усиливаться также по механизму обратной связи при изменении электролитного состава плазмы крови, в частности гипонатриемии или гиперкалиемии. В незначительной степени этого гормона стимулируется кортикотропином. Глюкокортикоиды вызывают следующие эффекты. регуляция всех видов обмена веществ: • белковый обмен: пол влиянием глюкокортикоидов стимулируются процессы распада белка. В основе этого эффекта лежит угнетение транспорта аминокислот из плазмы крови в клетки, что вызывает торможение последующих стадий белкового синтеза. Катаболизм белка приводит к снижению мышечной массы, остеопорозу; уменьшается также скорость заживления ран. Распад белка приводит к уменьшению содержания белковых компонентов в защитном мукоидном слое, покрываюшюм слизистую оболочку пищеварительного тракта. Последнее способствует увеличению агрессивного действия соляной кислоты и пепсина, что может привести к образованию пептических язв (ульцерогенный эффект глюокортикоидов); • 'жировой обмен', глюкокортикоиды усиливают мобилизацию жира из жировых депо и увеличивают концентрацию жирных кислот в плазме крови. Вместе с тем увеличивается отложение жира в области лица, груди и на боковых поверхностях туловища; • углеводный обмен: введение глюкокортикоидовприводит к увеличению содержания глюкозы в плазме крови (гипергликемия). В основе этого эффекта лежит стимулирующее действие на процессы глюконеогенеза. Избыток аминокислот, образовавшихся в результате катаболизма белка, используется для синтеза глюкозы в печени. Кроме того, глюкокортикоиды ингибируют активность фермента гексокиназы, что препятствует утилизации глюкозы тканями. Поскольку при избытке глюкокортикоидов основным источником энергии являются жирные кислоты, образующиеся за счет усиленной мобилизации жира, определенное количество глюкозы сберегается от энергетических трат, что также способствует гипергликемии. Гипергликемический эффект является одним из компонентов защитного действия глюкокортикоидов при стрессе, поскольку в виде глюкозы в организме создастся запас энергетического субстрата, расщепление которого помогает преодолеть действие экстремальных стимулов. Таким образом, по характеру своего влияния на углеводный обмен глюкокортикоиды являются антагонистами инсулина. При длительном приеме этих гормонов с целью лечения или повышенной их выработке в организме может развиться стероидный диабет. Противовоспалительное действие: • глюкокортикоиды угнетают все стадии воспалительной реакции (альтерация, экссудация и пролиферация); • стабилизируют мембраны лизосом, что предотвращает выброс протеолитических ферментов, способствующих развитию воспалительной реакции; • нормализуют повышенную проницаемость сосудов и тем самым уменьшают процессы экссудации и отечность тканей, а также выделение медиаторов воспалительной реакции; • угнетают процессы фагоцитоза в очаге воспаления; • уменьшают выраженность лихорадочной реакции, сопутствующей воспалительному процессу, за счет снижения выведения интерлейкина-1 из лейкоцитов, что снижает его стимулирующий эффект на центр теплопродукции в гипоталамусе. Противоаллергическое действие: изложенные выше эффекты, лежащие в основе противовоспалительного действия, во многом определяют также ингибируюидее действие глюкокортикоидов на развитие аллергической реакции (стабилизации лизосом, угнетение образования факторов,усиливающих аллергическую реакцию, снижение экссудации и др.). Гиперпродукция глюкокортикоидов приводит к снижению числа эозинофилов в крови, увеличенное количество которых обычно является «маркером» аллергии. Подавление иммунитета: угнетают как клеточный, так и гуморальный иммунитет, что связано со снижением образования антител и процессов фагоцитоза. Длительный прием глюкокортикоидов приводит к инволюции тимуса и лимфоидной ткани, являющихся иммунокомпетентными органами, вследствие чего уменьшается количество лимфоцитов в крови. Подавление иммунитета может являться серьезным побочным эффектом при длительном приеме глюкокортикоидов, поскольку при этом возрастает вероятность присоединения вторичной инфекции. С другой стороны, этот эффект может являться терапевтическим при использовании глюкокортикоидов для подавления роста опухолей, происходящих из лимфоидной ткани, или для торможения реакций отторжения при трансплантации органов и тканей. Участие в формировании оптимального уровая АД: повышают чувствительность сосудистой стенки к действию катехоламинов, что приводит к гипертензии. Повышению уровня ДД способствует также выраженное в небольшой степени м инералокортикоидное действие глюкокортикоидов (задержка в организме натрия и воды, сопровождающаяся увеличением объема циркулирующей крови). Гипертензивный эффект является одним из компонентов противошокового действия (шок всегда сопровождается резким падением ЛД). Противошоковая активность этих гормонов связана также с гипергликемией. Поскольку утилизация глюкозы мозговой тканью не зависит от инсулина, поступление глюкозы в клетки мозга определяется исключительно ее концентрацией в плазме крови. В связи с этим вызванную глюкокортикоидами гипергликемию расценивают как важный фактор адекватного энергетического обеспечения мозга, что противодействует развитию шока. В организме существует определенный суточный ритм выработки глюкокортикоидов. Основная масса этих гормонов вырабатывается в утренние (6—8) часы. Это обстоятельство учитывают при распределении суточной дозы гормонов в процессе длительного лечения глюкокортикоидами. Продукция глюкокортикоидов регулируется кортикотропином. Его выделение усиливается при действии на организм стрессорных стимулов различной природы, что является пусковым моментом для развития адаптационного синдрома. Стероидные гормоны во многом определяют адаптацию организма к действию стресса главным образом благодаря их способности стимулировать глюконеогенез и гликогенолиз. Последнее позволяет превращать почти все конечные продукты катаболизма в глюкозу, снабжающую энергией активно работающие ткани. Помимо этого, глюкокортикоиды сказывают потенцирующее влияние на регуляцию норадреналином кровяного давления, экскрецию воды почками и липолиз в жировых тканях. Гипофункция коры надпочечников приводит к повышению утомляемости, исхуданию, анорексии, гиперпигментации кожи и снижению кровяного давления. Как правило, эти нарушения сопровождаются также дисбалансом электролитов: в крови понижастся уровень ионов Na+ и повышается К+ и Са2+. У мужчин снижается половая потенция, однако у женщин сохраняется способность к зачатию и вынашиванию ребенка, так как гормоны, образующиеся в плаценте и у плода, защищают мать от стероидной недостаточности. При гиперфункции коры надпочечников развивается синдром Кушинга. У детей причиной этой болезни чаще всего является аденома надпочечников, а у взрослых повышенный синтез кортизола вызывает АКТГ, гиперсекреция которого связана в основном с опухолью гипофиза. Половые гормоны. При избыточном образовании половых гормонов в сетчатой зоне развивается адреногенитальный синдром двух типов - гетеросексуальный и изосексуальный. Гетеросексуальный синдром развивается при выработке гормонов противоположного пола и сопровождается появлением вторичных половых признаков, присущих другому полу. Изосексуальный синдром наступает при избыточной выработке гормонов одноименного пола и проявляется ускорением процессов полового развития. |