Главная страница
Навигация по странице:

  • 23. Глиоксилатный цикл, его регуляция.

  • 24. Пентозофосфатный цикл окисления глюкозы, его значение в энергетическом и пласти-ческом обмене. Регуляция цикла.

  • 25. Прямое окисление сахаров. Взаитмосвязь различных путей диссимиляции глюкозы.

  • 26. Электронтранспортная цепь митохондрий. Окислительное фосфорилирование. Электронтранс­портная цепь митохондрий

  • 27. Механизмы сопряжения дыхания и фосфорилирования: химическая и механохимическая гипотезы, хемиосмотическая теория П.Митчелла.

  • 28. Законы биоэнергетики. Первый закон биоэнергетики

  • Второй закон биоэнергетики

  • Третий закон биоэнергетики

  • 29. Разнообразие путей переноса электронов и протонов в клетке – митохондриях, ЭР, плазмалемме, цитоплазме. Представление о свободном и сопряженном дыхании. Дыхательный контроль.

  • физ. физиология. 2. Строение и функции биологических мембран. Субклеточные структуры растительного организма Оболочка клетки


    Скачать 243 Kb.
    Название2. Строение и функции биологических мембран. Субклеточные структуры растительного организма Оболочка клетки
    Дата24.01.2022
    Размер243 Kb.
    Формат файлаdocx
    Имя файлафизиология.docx
    ТипДокументы
    #340162
    страница2 из 9
    1   2   3   4   5   6   7   8   9

    Функции цикла Кребса


    1. Интегративная функция. Цикл Кребса является связующим звеном между реакциями катаболизма и анаболизма.

    2. Катаболическая функция.В ходе ЦТК окисляются до конечных продуктов обмена ацетильные остатки, образовавшиеся из топливных молекул (глюкоза, жирные кислоты, глицерол, аминокислоты).

    3. Анаболическая функция. Субстраты ЦТК являются основой для синтеза многих молекул (кетокислоты — α-кетоглутарат и ЩУК — могут превращаться в аминокислоты глу и асп; ЩУК может превращаться в глюкозу, сукцинил-КоА используется на синтез гема).

    1. Водороддонорная функция. Цикл Кребса поставляет субстраты для дыхательной цепи (НАД-зависимые субстраты: изоцитрат,-кетоглутарат, малат; ФАД-зависимый субстрат – сукцинат).

    2. Энергетическая функция. На уровне сукцинил-КоА происходит субстратное фосфорилирование с образованием одной молекулы макроэрга. Помимо этого, 4 дегидрогеназные реакции в цикле Кребса создают мощный поток электронов, богатых энергией. Эти электроны поступают в дыхательную цепь внутренней мембраны митохондрий. Конечным акцептором электронов является кислород. При последовательном переносе электронов на кислород выделяется энергия, достаточная для образования 9-ти молекул АТФ путем окислительного фосфорилирования. Более понятной эта цифра станет после того, как мы познакомимся с работой дыхательной цепи и с ферментом, синтезирующим АТФ.



    23. Глиоксилатный цикл, его регуляция.

    При прорастании богатых жиром семян ход цикла Кребса немного изменяется. Это разновидность цикла Кребса, в которой участвует глиоксиловая кислота, получила название глиоксилатного цикла (рис.3.3).

    При прорастании богатых жиром семян ход цикла Кребса немного изменяется. Это разновидность цикла Кребса, в которой участвует глиоксиловая кислота, получила название глиоксилатного цикла (рис.3.3).

    Первые этапы преобразований до образования изоцитрата (изолимонной кислоты) идут подобно циклу Кребса. Затем ход реакций изменяется. Изоцитрат при участии изоцитратлиазы расщепляется на янтарную и глиоксиловую кислоты:

    Сукцинат (янтарная к-та) выходит из цикла, а глиоксилат связывается с ацетил-СоА и образуется малат. Реакция катализируется малатсинтазой. Малат окисляется до ЩУК и цикл заканчивается. Кроме двух ферментов – изоцитратазы (изоцитратлиазы) и малатсинтазы, все остальные такие же, что и в цикле Кребса. При окислении малата восстанавливается молекула НАД+. Источником ацетил-СоА для этого цикла служат жирные кислоты, образующиеся при разрушении жиров.

    Восстановленный НАДН может окисляться с образованием трех молекул АТФ. Сукцинат (янтарная кислота) выходит из глиоксисомы и поступает в митохондрию, где включается в цикл Кребса. Тут он преобразуется в ЩУК, затем в пируват, фосфоенолпируват и дальше в сахар.

    24. Пентозофосфатный цикл окисления глюкозы, его значение в энергетическом и пласти-ческом обмене. Регуляция цикла.

    Ферменты, которые участвуют в этом процессе, локализованы в цитоплазме (гиалоплазме). Исходным веществом для этого цикла является глюкозо-6-фосфат, которая принимает участие и в гликолизе. Пентозофосфатный путь, как и гликолиз, можно разделить на две фазы: фазу окисления глюкозо-6-фосфата и фазу его регенерации (рис. 3.4).

    При окислении глюкозо-6-фосфата образуется 6-фосфоглюколактон. Последний неустойчив и преобразуется в 6-фосфоглюконат (6-ФГ). В процессе окисления глюкозо-6-фосфата фермент глюкозо-6-фосфатдегидрогеназа, коферментом которой является НАДФ+ в результате окисления глюкозо-6-фосфата восстанавливается:

    6-фосфоглюконат, в свою очередь, подвергается окислительному декарбоксилированию, образуется рибулозо-5-фосфат (Рл-5-Ф) и восстанавливается НАДФ+, который является коферментом фосфоглюконатдегидрогеназы.

    Если во время гликолиза одна молекула преобразуется в две триозы, то в пентозофосфатном цикле от глюкозо-6-фосфата отщепляется один атом углерода и образуется пентоза. Отсюда и другое название пентозофосфатного цикла – анатомический в отличие от гликолиза, называемого дихотомическим. Образованием рибулозо-5-фосфата окислительная фаза цикла заканчивается.

    Пентозофосфатный цикл – это аэробное окисление углеводов. Он идет в гиалоплазме при высокой концентрации кислорода.

    Большое физиологическое значение этот цикл имеет как источник НАДФН, который является донором водорода для восстановительного аминирования и других процессов. Кроме того, пентозы, которые появляются в этом цикле, используются для синтеза таких важных соединений клетки как АТФ, АДФ, АМФ, нуклеиновые кислоты, пиридиновые ферменты и другие. Эритрозо-4-фосфат – промежуточный продукт этого цикла – участвует в образовании шикимовой кислоты, необходимой для синтеза гормонов роста. Таким образом, этот цикл дыхания очень важный для растений, как и гликолиз, и цикл Кребса.

    Скорость пентозофосфатного цикла регулируется концентрацией НАДФ+, поскольку для проявления активности глюкозо-6-фосфатдегидрогеназа и дегидрогеназа 6-фосфоглюконовой кислоты требуется постоянный приток окисленной формы этого нуклеотида.

    Один и тот же дыхательный субстрат, например глюкоза, может преобразовываться разными путями. Как клетка выбирает тот путь, по которому пойдет окисление?

    Во-первых, влияет наличие кислорода. Так пентозофосфатный окислительный цикл идет только в присутствии О2; анаэробное условия подавляют активность дегидрогеназ этого цикла. В анаэробных условиях идет гликолиз. Во-вторых, на выбор пути влияет активность ферментов. Когда активны ферменты гликолиза, тогда ферменты пентозофосфатного цикла неактивны. В-третьих, выбор пути окисления зависит от фосфатного баланса, т. е. от отношения неорганического фосфата к АТФ. При низких соотношениях оба пути замедленны.

    Рассмотрение преобразований органических веществ при дыхании показывает, что дыхание является центральным процессом обмена веществ, объединяющим преобразование углеводов, белков и жиров. Промежуточные продукты дыхания – ацетил-СоА, пируват, кетоглуторат и др. – могут использоваться для синтеза различных соединений. Участие одних и тех же веществ в разных циклах доказывает возможность переключения от одного цикла на другой в зависимости от потребностей клетки.
    25. Прямое окисление сахаров. Взаитмосвязь различных путей диссимиляции глюкозы. Гликолитический путь, в основе которого лежит двукратное фосфорилирование гексозы, и ПФП с одним фосфорилированием глюкозы — не единственные пути окисления молекулы сахара. Некоторые организмы способны окислять и нефосфо-рилированную глюкозу. Этот путь прямого окисления сахаров обнаружен у некоторых бактерий, грибов и животных, а также у фотосинтезирующих морских водорослей. Ферментативное окисление глюкозы в глюконовую кислоту сопровождается выделением пероксида водорода, который затем разлагается каталазой или пероксидазой. Образовавшаяся глюконовая кислота может вовлекаться в дальнейший метаболизм после ее фосфорилирования через образование двух триоз − пировиноградной кисло­ты и 3-фосфоглицеринового альдегида, которые через ПВК могут окисляться в цикле Кребса.








    Дыхательные циклы − гликолиз и цикл ди- и трикарбоновых кислот, ПФП и прямое окисление сахаров − система взаимосвязанных процессов. Ниже представлена схема этих взаимосвязей:

    Связь между гликолизом и ПФП осуществляется через глюконовую кислоту и фосфотриозы. В клетке гликолиз и ПФП пространственно не отделены друг от друга. Эти процессы протекают в растворимой в растворимой части цитоплазмы, в пропластидах и хлоропластах. Они имеют общие субстраты — глюкозо-6-фосфат, фруктозо-6-фосфат и 3-фосфоглицериновый альдегид. В норме доля пентозофосфатного цикла в общем дыхательном обмене составляет 10−40% и варьирует в зависимости от типа ткани и ее функциональ­ного состояния. В анаэробных условиях гликолиз доминирует над ПФП. Однако в хлоропластах активность окислительного апотомического пути намного выше по сравнению с гликоли­зом. В цитоплазме большая часть продуктов ПФП метаболизируется через гликолиз.

    Активность ПФП увеличивается при неблагоприятных усло­виях: засухе, калийном голодании, инфекции, затенении, засо­лении, при старении.

    Если в процессе дыхания прямому окислению подвергаются и другие сахара, кроме глюкозы, то образуется целое семейство кислот, названных кислотами прямого (первичного) окисления Сахаров. Глюкозооксидаза способна окислять только D-глюко-зу. В этом отношении она отличается от D-гексозооксидазы, способной наряду с D-глюкозой окислять и другие гексозы (мальтозу, лактозу, целлобиозу) с образованием соответствую­щих альдоновых кислот.

    26. Электронтранспортная цепь митохондрий. Окислительное фосфорилирование.

    Электронтранс­портная цепь митохондрий

    О взаимоотношениях гликолиза и ПФП с прямым окисле­нием Сахаров говорилось выше. Эта связь осуществляется через глюконовую кислоту и фосфотриозы.

    В клетке гликолиз и ПФП пространственно не отделены друг от друга. Эти процессы протекают в растворимой части цитоплазмы, в пропластидах и в хлоропластах. Они имеют общие субстраты — глюкозо-6-фосфат, фруктозо-6-фосфат и 3-фосфоглицериновый альдегид. В норме доля пентозофосфат-ного цикла в общем дыхательном обмене составляет 10 — 40°/ и варьирует в зависимости от типа ткани и ее функциональ­ного состояния. В анаэробных условиях гликолиз доминирует над ПФП. Однако в хлоропластах активность окислительного апотомического пути намного выше по сравнению с гликоли­зом. В цитоплазме большая часть продуктов ПФП метаболи-зируется через гликолиз.

    Активность ПФП увеличивается при неблагоприятных усло­виях: засухе, калийном голодании, инфекции, затенении, засо­лении, при старении. Скорость окисления NADPH или подав­ляющее действие продуктов одного пути дыхания на реакции другого играют существенную роль в регуляции соотношения различных дыхательных циклов.

    Цикл Кребса, глиоксилатный и пентозофосфатный пути функционируют только в условиях достаточного количества кислорода. В то же время 02 непосредственно не участвует в реакциях этих циклов. Точно так же в перечисленных циклах не синтезируется АТР (за исключением АТР, обра­зующегося в цикле Кребса в результате субстратного фосфорилирования на уровне сукцинил-СоА).

    Кислород необходим для заключительного этапа дыхатель­ного процесса, связанного с окислением восстановленных ко-ферментов NADH и FADH2 в дыхательной электронтранс-портной цепи (ЭТЦ) митохондрий. С переносом электронов по ЭТЦ сопряжен и синтез АТР.

    Дыхательная ЭТЦ, локализованная во внутренней мембране митохондрий, служит для передачи электронов от восстанов­ленных субстратов на кислород, что сопровождается транс­мембранным переносом ионов Н + . Таким образом, ЭТЦ митохондрий (как и тилакоидов) выполняет функцию окисли­тельно-восстановительной Н + -помпы.

    Компоненты электронтранспортной цепи митохондрий растений и их стандартные окислительно-восстановительные потенциалы (Е'0)

    27. Механизмы сопряжения дыхания и фосфорилирования: химическая и механохимическая гипотезы, хемиосмотическая теория П.Митчелла.

    Для объяснения механизма окислительного фосфорилирования выдвигалось много гипотез.

    Общепринятой в настоящее время является хемиосмотическая теория, предложенная Митчеллом в 1961 годуРис. 3. Схема сопряжения дыхания и фосфорилирования согласно хемиосмотической теории.

    1. Процесс протекает на внутренней мембране митохондрий, где располагается дыхательная цепь ферментов.

    2. Внутренняя мембрана непроницаема для протонов (и большинства катионов). Это свойство обусловливает возможность неравномерного распределения заряженных частиц по обе стороны мембраны. Движение протонов и электронов имеет строго определенную направленность.

    3. Ферменты-переносчики дыхательной цепи располагаются в мембране зигзагообразно. Они способны не только акцептировать атомарный водород от окисляемых субстратов, но и транспортировать его в поперечном направлении через мембрану

    Достигая противоположного (внешнего) слоя мембраны, переносчик освобождает в водное пространство снаружи от нее протоны, а электроны при участии дополнительных переносчиков направляются обратно к внутреннему слою мембраны и передаются очередному ферменту дыхательной цепи. Для восстановления ферментам кроме электронов нужны протоны, которые поступают из внутреннего пространства за счет вынужденной диссоциации воды. Всего при переносе пары электронов (от НАД.2Н) по дыхательной цепи происходит выталкивание в межмембранное пространство трех пар протонов.

    4. В результате такого перераспределения электрических зарядов со стороны матрикса внутренняя мембраны оказывается заряженной отрицательно и щелочной (в ней накапливается избыток ОН-ионов за счет реакции (1) и остающихся ОНот диссоциации воды в матриксе), а со стороны межмембранного пространства - заряженной положительно и более кислой (за счет транспорта протонов). Возникает электрохимический протонный градиент, в форме которого на замкнутой мембране и происходит концентрация энергииЭлектрохимический потенциал обозначают ΔμН+ и состоит он из электрического (ΔΨ – разности электрических потенциалов) и осмотического (ΔрН – разности концентраций протонов).

    5. Возвращение протонов в матрикс осуществляется с помощью фермента аденозинтрифосфатазы (АТФ-азы или АТФ-синтазы). Этот фермент встроен во внутреннюю мембрану. Возникающие изменения в мембране (электрохимический потенциал) передаются АТФ-синтазе, которая активизируется и катализирует синтез АТФ.

    Следует отметить, что протонный градиент на биомембранах может использоваться не только для синтеза АТФ, но и для других целей: для транспорта через мембраны нуклеозидди- и трифосфатов, для поддержания осмотического давления, для транспорта через мембраны веществ против градиента концентрации, для выработки тепла.

    28. Законы биоэнергетики.

    Первый закон биоэнергетики. Живая клетка избегает прямого использования энергии внешних ресурсов для совершения полезной работы. Она сначала превращает их в одну из трех конвертируемых форм энергии («энергетических валют»), а именно в АТФ, ∆ µНили

    ∆µNa+, которые затем расходуются для осуществления различных энергоемких процессов.

    Второй закон биоэнергетики. Любая живая клетка всегда рас- полагает как минимум двумя «энергетическими валютами»: водо- растворимой (АТФ) и связанной (∆µН, либо ∆µNa+).

    У морских бактерий имеются, по меньшей мере, АТФ и ∆µNa+, но очень часто также и ∆µН+. У пресноводных бактерий, «валютой» служат АТФ ∆µН+. Что касается ∆µNa+, то она, как правило, отсутствует из-за низкой концентрации Naв среде обитания.

    Третий закон биоэнергетики. «Энергетические валюты» клетки могут превращаться одна в другую. Поэтому получения хотя бы одной из них за счет внешних ресурсов достаточно для поддержания жизнедеятельности.

    Так, анаэробные бактерии могут за счет гликолиза производить АТФ, который затем используется в процессах энергообеспечения либо непосредственно, либо после превращения в ∆µНили ∆µNa+. Железобактерии способны окислять кислородом ион Fe2+ в ион Fe3+, образуя ∆µН+. Эта единственная реакция дыхания питает все потребляющие энергию процессы, в том числе синтез АТФ из АДФ и Н3РО4.

    29. Разнообразие путей переноса электронов и протонов в клетке – митохондриях, ЭР, плазмалемме, цитоплазме. Представление о свободном и сопряженном дыхании. Дыхательный контроль.

    Последовательность расположения компонентов дыхательной цепи определяется величиной их RedOx-потенциала и способностью переносить только электроны (e) либо одновременно и электроны, и протоны (p). Электроны переносятся от элементов с более низкими стандартными потенциалами (т.е. от более активных восстановителей) к элементам с более высокими стандартными потенциалами.

    I комплекс – НАДН2:CoQ-оксидоредуктаза (ФМН-зависимая, с FeS-центрами). Принимает на стороне митохондриального матрикса 2 Н (2 e + 2 p) от НАДН2, имеющего самый низкий стандартный потенциал (Е0= - 0,32 В), окисляя его до НАД, высвобождает 2 p в межмембранное пространство МТХ, а 2 e передает дальше по e-транспортной цепи – на III комплекс.

    II комплекс – сукцинат-дегидрогеназа (ФАД-зависимая, с FeS-центрами), принимает 2 e и 2 p от ФАДН2 с Е0= - 0,15 В (окисляя его до ФАД) на стороне митохондриального матрикса и передает их напрямую на CoQ III комплекса, минуя I комплекс.

    III комплекс – CoQН2:cyt c-оксидоредуктаза (с FeS-центром; включает в себя убихинон, FeS-белок и цитохромы b, c1, c), принимает e от комплексов I и II и передает на IV комплекс e-транспортной цепи, а также высвобождает в межмембранное пространство 2 p, полученных от II комплекса либо захваченных из митохондриального матрикса сопряжено с переносом пары e от I комплекса.

    IV комплекс – цитохромоксидаза (комплекс цитохромов a, a3), переносит e с cyt c III комплекса на конечный акцептор – О2, восстанавливая его до Н2О с Е0= + 0,82 В в митохондриальном матриксе.

    НАДН2-дегидрогеназа и CoQ – способны переносить как e, так и р. Поэтому являются 2 точками сопряженной перекачки р. Механизм третьей точки сопряжения не ясен. В итоге переносятся по цепи 2 e и с одной стороны внутренней митохондриальной мембраны на другую – 6 р. В случае, когда донор e – ФАДН2, только 4 р, т.к. минуется первая точка сопряжения.

    Регуляция процессов дыхания осуществляется на разных уровнях. Прежде всего это субстратный контроль дыхания: доступность, количество и состав дыхательных субстратов. Регуляция активности оксидоредуктаз взаимосвязанных дыхательных циклов, ЭТЦ митохондрий, других оксидаз и оксиге-наз, локализованных в цитоплазме и органоидах, обеспечивается конкуренцией за общие метаболиты и действием соединений, выступающих в качестве аллостерических факторов. АТР и ADP, NADH и NAD+ , интермедиаты циклов через системы обратных связей подавляют (отрицательная обратная связь) или активируют (положительная обратная связь) отдельные звенья дыхательного процесса.

    В норме субстраты тканевого дыхания и О2 находятся в достаточном количестве и не лимитируют окислительное фосфорилирование. Активность окислительного фосфорилирования ограничивает только концентрация АДФ, которая обратно пропорциональна концентрации АТФ.

    При нагрузке концентрация АТФ снижается, а АДФ увели­чивается, что ускоряет дыхание и фосфорилирование. В состоянии покоя количество АТФ увеличивается, а АДФ снижается, что тормозит дыхание и фосфорилирование.

    Зависимость ин­тенсивности дыхания митохондрий от концент­рации АДФ называют дыхательным контролем. В результате дыхательного контроля скорость синтеза АТФ соответствует потребностям клет­ки в энергии. Общее содержание АТФ в организме 30—50 г, но каждая молекула АТФ в клетке «живёт» мень­ше минуты. В сутки у человека синтезируется 40—60 кг АТФ и столько же распадается.
    1   2   3   4   5   6   7   8   9


    написать администратору сайта