физ. физиология. 2. Строение и функции биологических мембран. Субклеточные структуры растительного организма Оболочка клетки
Скачать 243 Kb.
|
72. Фосфатидатная сигнальная система, протеинкиназы и протеинфосфатазы. Фосфатидокислотная сигнальная система. В клетках животных G белки под воздействием стрессора активируют фосфолипазы C и D. Фосфолипаза С гидролизует фосфатидилинозитол-4,5-бифосфат с образованием диацилглицерола и инозитол-1,4,5-трифосфата. Последний освобождает Са2+ из связанного состояния. Повышенное содержание ионов кальция приводит к активации Са2+-зависимых протеинкиназ. Диацилглицерол после фосфорилирования специфичной киназой превращается в фосфатидную кислоту, которая является сигнальным веществом в животных клетках. Фосфолипаза D непосредственно катализирует образование фосфатидной кислоты из липидов (фосфатидилхолин, фосфатидилэтаноламин) мембран. У растений стрессоры активируют G белки, фосфолипазы С и D у растений. Следовательно, начальные этапы этого сигнального пути одинаковы у животных и растительных клеток. Можно предположить, что в растениях также происходит образование фосфатидной кислоты, которая может активировать протеинкиназы с последующим фосфорилированием белков, в том числе и факторов регуляции транскрипции. Эта сигнальная система относится к типу систем, функционирование которых начинается с превращения мембранных фосфолипидов под воздействием фосфолипаз. Для фосфатидной сигнальной системы – это фосфолипаза Д, активация которой происходит через G-белки в ответ на механическое повреждение тканей или воприятие рецептором определенного элиситора. Активации фермента способствует подкисление среды до рН 4,5-5,0 и повышение концентрации ионов Са 2+, что соответствует наиболее ранним изменениям в клетках, которые создаютя на внутренней поверхности плазмалеммы и на внешней поверхности тонопласта при действии на клетки растений различных элиситоров. Субстратами для фосфолипаз Д являются мембранные фосфолипиды: фасфатидилхолин, фосфатилидэтаноламин и фосфатидилглицорол. Высвобождение из них фосфатидная кислота выступает в роли вторичного посредника, от которого сигнальный импульс передается на протеинкиназы и затем на ФРТ. Кроме того, свободная фосватидная кислота может превращаться в интермедиаты кальциевого и липоксигеназного сигнальных путей. 73. Механизмы стресса и адаптации на организменном, популяционном уровнях. Механизмы стресса и адаптации на организменном уровне.На разных уровнях организации приспособление к экстремальным условиям осуществляется у растений неодинаково. Чем выше уровень биологической организации (клетка, организм, популяция), тем большее число механизмов одновременно участвует в адаптации растений к стрессовым воздействиям. На организменном уровне сохраняются все механизмы адаптации, свойственные клетке, но дополняются новыми, отражающими взаимодействие органов в целом растении. Прежде всего это конкурентные отношения между органами за физиологически активные вещества и трофические факторы. Эти отношения построены на силе аттрагирующего (притягивающего) действия. Подобный механизм позволяет растениям в экстремальных условиях сформировать лишь такой минимум генеративных органов (аттрагирующих центров), которые они в состоянии обеспечить необходимыми веществами для нормального созревания. Например, при неблагоприятных условиях в колосе злака формируются не все семена, а лишь немногие, но эти оставшиеся достигают обычных размеров. Точно так же у плодовых деревьев в результате конкуренции за питательные вещества между ранее и позже заложившимися плодами часть из них опадает и тем в большей степени, чем хуже условия существования растения в целом. При неблагоприятных условиях резко ускоряются процессы старения и опадения нижних листьев, причем продукты их распада используются для питания более молодых органов. Важнейший и очень характерный для растений механизм защиты от последствий действия экстремальных факторов — процесс замены поврежденных или утраченных органов путем регенерации и роста пазушных почек. Стресс на популяционном уровне. Вусловиях длительного и сильного стресса в период истощения гибнут те индивидуумы, у которых генетически норма реакции на данный эк стремальный фактор ограничена узкими пределами. Эти растения устраняются из популяции, а семенное потомство образуют лишь генетически более устойчивые растения. В результате общий уровень устойчивости в популяции возрастает. Таким образом, на популяционном уровне в стрессовую реакцию включается дополнительный фактор — отбор, приводящий к появлению более приспособленных организмов и новых видов (генетическая адаптация). Предпосылкой к этому механизму служит внутрипопуляционная вариабельность уровня устойчивости к тому или иному фактору или группе факторов. 74. Засухоустойчивость и устойчивость к перегреву. Действие засухи в первую очередь приводит к уменьшению в клетках свободной воды, что влияет на гидратные оболочки белков и функционирование ферментов. При длительном завядании активируются гидролитические процессы, что ведет к увеличению содержания в клетках низкомолекулярных белков и углеводов. Под влиянием засухи в листьях снижается количество РНК вследствие уменьшения ее синтеза и активации рибонуклеаз. В цитоплазме наблюдается распад полисом. Изменения, касающиеся ДНК, происходят лишь при длительной засухе. Из-за уменьшения свободной воды возрастает концентрация вакуолярного сока. При обезвоживании у растений, не приспособленных к засухе, значительно усиливается интенсивность дыхания, а затем снижается. У засухоустойчивых растений в этих условиях существенных изменений дыхания не наблюдается. Во время засухи наряду с обезвоживанием происходит перегрев растений. Высокая температура увеличивает концентрацию клеточного сока и проницаемость клеточных мембран. В результате выхода веществ, растворенных в клеточном соке, постепенно снижается осмотическое давление. Однако при температуре выше 35оС осмотическое давление повышается из-за усиления гидролиза крахмала и белков, что приводит к увеличению содержания моносахаров, аминокислот и аммиака. Аммиак токсичен для клеток неустойчивых к перегреву растений. У жаростойких растений наблюдается рост содержания органических кислот, связывающих избыточный аммиак. При действии высоких температур в клетках растений индуцируется синтез стрессовых белков теплового шока. В ядре эти белки образуют гранулы, связывая ДНК и блокируя экспрессию генов. После прекращения стресса гранулы распадаются и экспрессия генов восстанавливается. Один из белков теплового шока стабилизирует плазмалемму. Растения различных мест обитания имеют неодинаковую устойчивость к низким температурам. Так, многие растения Крайнего Севера без особого вреда зимой переносят охлаждение до -60оС. Большинство теплолюбивых растений южного происхождения плохо переносит низкие положительные температуры. Например, хлопчатник гибнет в течение суток при 1-3оС. Поэтому устойчивость растений к низким температурам подразделяют на холодостойкость или устойчивость теплолюбивых растений и растений умеренной зоны к низким положительным температурам и морозоустойчивость или способность растений переносить температуру ниже 0оС. У теплолюбивых растений при низких положительных температурах происходит потеря тургора клетками надземной части, так как нарушается доставка воды. Наблюдается усиление распада белков и накопление в тканях растворимых форм азота. Изменяется функциональная активность мембран из-за перехода липидов из жидкокристаллического состояния в состояние геля. В клетках высших растений возможен переход насыщенных жирных кислот в ненасыщенную форму с помощью специальных ферментов (десатураз). Эти ферменты катализируют образование двойных связей. Синтез ферментов зависит от температуры. В ответ на ее понижение гены десатураз активируются. При пониженных температурах десатуразы превращают насыщенные жирные кислоты в ненасыщенные. Появление двойной связи в жирной кислоте увеличивает текучесть мембран. Десатурация жирных кислот является важным защитным механизмом растений от повреждающего действия низких положительных температур. 75. Устойчивость растений к низким температурам. Холодостойкость, морозоустойчи-вость. Устойчивость растений к низким температурам подразделяют на холодостойкость - устойчивость теплолюбивых растений к низким положительным температурам, и морозоустойчивость – способность растений переносить отрицательные температуры. Холодостойкость. При помещении теплолюбивого растения в условия низкой положительной температуры отмечается: - постепенная потеря тургора клетками надземной части; - у ряда видов наблюдается усиление распада белков и накопление в тканях растворимых форм азота; - нарушается функциональная активность мембран из-за перехода насыщенных жирных кислот, входящих в их состав, из жидко-кристаллического состояния в состояние геля. Холодостойкость теплолюбивых растений можно усилить предпосевным закаливанием проклюнувшихся семян и рассады путем выдерживания их в чередующихся условиях положительных низких температур и более высоких. Холодостойкость повышается также при замачивании семян в 0,25% растворах микроэлементов или нитрата аммония. Морозоустойчивость. Быстрое понижение температуры в экспериментальных условиях сопровождается образованием льда внутри клеток и, как правило, их гибелью. Постепенное снижение температуры, что обычно в естественных условиях, приводит к образованию льда в межклетниках. При этом образующиеся кристаллы льда вытесняют из межклетников воздух, и замерзшая ткань выглядит прозрачной. Основные причины гибели клеток при низких температурах: - обезвоживание клеток из-за оттягивания воды кристаллами льда, образующимися в межклетниках; - механическое сжатие льдом, повреждающее клеточные структуры; - выход ионов и сахаров из клеток, из-за нарушения их активного транспорта (повреждаются переносчики). Приспособления растений к перенесению низких температур. Морозоустойчивые растения способны предотвращать или уменьшать действие отрицательных низких температур. Такие растения обладают приспособлениями, уменьшающими обезвоживание клетки: - высокая проницаемость мембран в этих условиях. Это необходимо для транспорта воды из клетки и предотвращения образования внутриклеточного льда. Проницаемость мембран в условиях низких температур сохраняется дольше, если в их составе повышается содержание ненасыщенных жирных кислот; - усиление синтеза криопретекторов – веществ, защищающих ткани от воздействия низких температур. К ним относятся полимеры, способные связывать значительные количества воды – гидрофильные белки, моно и олигосахариды. Вода, связываемая в виде гидратных оболочек этими молекулами, не замерзает и не транспортируется, оставаясь в клетке. Другой тип полимеров-криопротекторов – молекулы гемицеллюлоз, выделяемые в клеточную стенку. Они обволакивают кристаллы льда и тормозят их рост. - накопление запасных веществ, которые могут использоваться при возобновлении роста. Морозоустойчивость растений можно повысить с помощью закалки. Закаливание подготавливает весь комплекс защитных механизмов. Морозоустойчивость повышают также микроэлементы. Так, цинк повышает содержание связанной воды и усиливает накопление сахаров, молибден способствует увеличению содержания общего и белкового азота. Сходный эффект оказывают кобальт, медь, ванадий и др. 76. Солеустойчивость растений. Солеустойчивость (галотолерантность) — это устойчивость растений к повышенной концентрации солей в почве или в воде. Среди культурных растений настоящих галофитов нет (см. табл. 9.1). Хлопчатник, ячмень, люцерна, сахарная свекла, виноград, маслина, финиковая пальма, помидоры, арбузы обладают повышенной солеустойчивостыо; кукуруза, лен, овес, гречиха, персик, лимон, пшеница — пониженной; мягкая пшеница устойчивее твердой. При длительном выращивании в условиях засоления у ячменя, проса, томатов обнаружено значительное повышение их солеустойчивости без снижения урожая. Солеустойчивость зависит от фазы развития растений. Всходы страдают сильнее, чем взрослые растения, задерживается прорастание семян, так как в эндосперме снижается активность гидролитических ферментов. При засолении в первую очередь повреждаются наиболее активно растущие части растения. Угнетение ростовых процессов в условиях засоления продолжается в течение всего онтогенеза. Разные органы формируются медленнее, ослабляется побегообразование, у томатов не образуются цветки, уменьшается биомасса. Считается, что чем старше растение, тем больше устойчивость. Однако у риса устойчивость к солям изменяется в онтогенезе: во время прорастания семян она выше, у проростков — резко снижается, во время кущения увеличивается, во время цветения вновь уменьшается; в период созревания наблюдается наибольшая устойчивость. Не только разные виды, но и разные сорта одной культуры могут отличаться по устойчивости к солям. Поскольку любой сорт представляет собой популяцию, то разные растения могут отличаться по солеустойчивости. На солеустойчивость влияет и климат. В условиях холодного климата растения более устойчивы к солям. 77. Устойчивость растений к недостатку кислорода. Кислородная недостаточность (гипоксия) возникает при временном или постоянном переувлажнении, при заболачивании почвы, при образовании ледяной корки на озимых посевах M хранении сельскохозяйственной продукции. У растений, корни которых постоянно испытывают недостаток кислорода, в процессе длительной эволюции появились изменения в морфолого-анатомическом строении тканей: разрастание основания стебля, образование дополнительной поверхностной корневой системы M вентиляционных систем межклетников, необходимых для транспорта кислорода из надземной части растения в корни. У некоторых растений для защиты от гипоксии активируется пентозофосфатный M гликолитический пути дыхания. В устойчивых к кислородному дефициту растениях не накапливаются токсичные продукты анаэробного распада. При недостатке кислорода как конечного акцептора электронов приспособительными оказываются процессы так называемого аноксического эндогенного окисления, в ходе которого электроны переносятся на такие вещества как нитраты, двойные связи ненасыщенных соединений (жирные кислоты, каротиноиды). Для повышения устойчивости к гипоксии замачивают семена в растворах хлорхолинхлорида, никотиновой кислоты или сульфата марганца. 78. Газоустойчивость растений. По характеру реакции у растений различают газочувствительность (т.е. скорость и степень проявления патологических процессов под влиянием газов) и газоустойчивость. Газоустойчивость – это способность растений сохранять жизнедеятельность в присутствии в атмосфере вредных газов. К ним относятся газообразные соединения: сернистый газ (SO2), оксиды азота (NO, NO2), угарный газ (СО), соединения фтора и др., углеводороды, пары кислот (серной, сернистой, азотной, соляной), фенола и др., твердые частицы сажи, золы, пыли, содержащие токсические оксиды свинца, селена, цинка и т.д. Загрязняющие атмосферный воздух компоненты (эксгалаты) по величине частиц, скорости оседания под действием силы тяжести и электромагнитному спектру подразделяют на пыль, пары, туманы и дым. Газы и пары, легко проникая в ткани растений через устьица, могут непосредственно влиять па обмен веществ клеток, вступая в химические взаимодействия уже на уровне клеточных стенок и мембран. Пыль, оседая на поверхности растения, закупоривает устьица, что ухудшает газообмен листьев, затрудняет поглощение спета, нарушает водный режим. Наиболее сильно газы воздействуют на процессы в листьях. Косвенный эффект загрязнения атмосферы проявляется через почву, где газы влияют на микрофлору, почвенный поглощающий комплекс и корни растений. Кислые газы и кислые дожди нарушают водный режим тканей, приводят к постоянному закислению цитоплазмы клеток, изменению работы транспортных систем мембран (плазмалеммы, хлоропластов), накоплению Са, Zn, Pb, Сu. В этих условиях интенсивность фотосинтеза снижается из-за нарушения мембран хлоропластов. Кроме того, на свету быстро разрушаются хлорофилл а и каротин, меньше – хлорофилл b и ксантофиллы. Культурным растениям свойственна большая чувствительность к загрязнению атмосферы по сравнению с дикими видами. Анатомо-морфологическая устойчивость связана с особенностями строения растений. Она проявляется в зависимости газоустойчивости растений от некоторых особенностей в анатомо-морфологическом строении листьев, ответственных за интенсивность газообмена и, следовательно, за скорость поглощения токсичных газов. Скорость поглощения газов зависит от числа устьиц, динамики их движения (степени открытия) в течение суток, толщины кутикулы, эпидермиса, толщины губчатой ткани, отношения высоты палисадной ткани к высоте губчатой и объема полостей в губчатой паренхиме. К физиологическим механизмам устойчивости можно отнести состояние покоя у растений, которое выработалось в ходе эволюции как приспособление к перенесению неблагоприятного периода года, характеризующегося низкими температурами или продолжительными засухами. Резкое снижение интенсивности газообмена при одновременном усилении развития покровных тканей обеспечивает зимующим побегам деревьев и кустарников высокую газоустойчивость. 79. Радиоустойчивость растений. Влияние УФ-лучей и ионизирующего излучения на физиологические процессы. В естественных или экспериментально созданных условиях стрессовое состояние у растений может быть индуцировано повышенным уровнем ультрафиолетового излучения или ионизирующего излучения. Первостепенное значение облучения связано с его влиянием на генетический аппарат клетки. Различные типы излучений могут также непосредственно нарушать многие физиологические процессы: дыхание, фотосинтез, рост активный транспорт, а также ионный баланс и синтез белка. Один из ведущих радиобиологов Кузин (1956) считает, что в лучевом поражении клеток большую роль играют образующиеся при радиационном воздействии токсичные продукты окисления биосубстратов и ненасыщенных жирных кислот (радиотоксины). Образующиеся при облучении водорастворимые, а также липоидные радиотоксины взаимодействуют с генетическими структурами и мембранами и, таким образом, играют важную роль в развитии лучевого поражения клетки. Радиотоксины способны активно реагировать с ДНК и действовать на внутренние мембраны клеток, вызывая мутагенные эффекты. При воздействии на мембраны митохондрий возникают нарушения в окислительно-восстановительных процессах, сопряженных с реакциями окислительного фосфорилирования. Предполагается, что липоидные радиотоксины действуют в основном на мембраны, а хиноидные радиотоксины реагируют с ДНК ядра, вызывая нарушение в ней информации. Первичное действие излучения на генетический материал приводит к разрыву хромосом, в результате чего образуются фрагменты, в затем и перекомбинации, вызывающие появление хромосомных перестроек. Более сильное воздействие радиации приводит к прекращению митозов и сильному повреждению ядер. Адаптация растений к действию УФ-лучей и ионизирующего излучения. В настоящий период быстрого развития атомной энергетики все большее внимание привлекает проблема надежности растений и непосредственно устойчивости их к ионизирующему излучению. Основную роль в защите растений от облучения играют репарационные процессы, среди которых выделяют репарацию генетических управляющих систем клетки и репарацию отдельных клеточных структур. Устойчивость растений к действию радиации может определяться рядом факторов как на молекулярном, так и на более высоких уровнях организации (Полевой, 1989): 1. Степень радиационного повреждения молекул ДНК в клетке уменьшают системы восстановления ДНК, независимые (темновая репарация) или зависимые от света. Такого рода восстановление целостности ДНК способствует также уменьшению повреждений (изменений) и в хромосомах. 2. Защиту на уровне клетки осуществляют вещества-радиопротекторы. Их функция состоит в гашении свободных радикалов, возникающих при облучении (и повреждающих многие биологически важные молекулы – нуклеиновые кислоты, белки-ферменты, липиды мембран и др.), в создании локального недостатка кислорода или в блокировании реакций с участием продуктов – производных радиационно-химических процессов. Функцию радиопротекторов выполняют сульфгидрильные соединения (глутатион, цистеин, цистеамин и др.) и такие восстановители, как аскорбиновая кислота; ионы металлов и элементы питания (бор, висмут, железо, калий, кальций, кобальт, магний, натрий, сера, фосфор, цинк); ряд ферментов и кофакторов (каталаза, пероксидаза, полифенолоксидаза, цитохром с, NAD); ингибиторы метаболизма (фенолы, хиноны); активаторы (ИУК, кинетин, гибберелловая кислота) и ингибиторы роста (абсцизовая кислота, кумарин) и др. 3. Восстановление на уровне организма обеспечивается у растений: а) неоднородностью популяции делящихся клеток меристем, которые содержат клетки с разной интенсивностью деления; б) асинхронностью делений в меристемах, так что в каждый данный момент в них содержатся клетки на разных фазах митотического цикла с неодинаковой радиоустойчивостью: в) существованием в апикальных меристемах фонда клеток типа покоящегося центра, которые приступают к энергичному делению при остановке деления клеток основной меристемы и восстанавливают как инициальные клетки, так и меристему; г) наличием покоящихся меристем типа спящих почек, которые при гибели апикальных меристем начинают активно функционировать и восстанавливают повреждение. 80. Устойчивость растений к инфекционным болезням. Устойчивость к болезни есть способность растения предотвращать, ограничивать или задерживать ее развитие. Устойчивость может быть неспецифической, или видовой, и специфической, или сортовой. Видовая устойчивость защищает растения от огромного количества сапрофитных микроорганизмов. Этот тип устойчивости предлагается также называть фитоиммунитетом (от лат. immunitas - освобождение от чего-либо), поскольку видовая устойчивость касается болезней неинфекционных для данного вида растений. Благодаря видовой устойчивости каждый вид растений поражается лишь немногими возбудителями. Специфическая устойчивость имеет отношение к паразитам, способным преодолевать видовую устойчивость растения и поражать растение в той или иной степени. Эта устойчивость очень важна для культурных растений, так как именно специфические патогены обусловливают более 90% потерь от болезней сельскохозяйственных культур. Инфекционные болезни растений вызываются паразитическими грибами и бактериями, вирусами, растительными почвенными нематодами (фитогельминты), паразитическими цветковыми растениями (повилика, заразиха, омела). Фитогельминты и растения-паразиты могут быть переносчиками вирусов. Наибольшие потери урожаев вызывают грибные заболевания, несколько меньшие - вирусные и бактериальные. Это связано со значительно большим числом видов грибов-патогенов (более 10000 видов) по сравнению с бактериями, поражающими растения (150 - 200 видов). Характеристика возбудителей болезней. Различают следующие группы патогенов: 1. Факультативные (необязательные) паразиты, которые, являясь сапрофитами, живут на мертвых остатках растений, но могут поражать и живые, но ослабленные растения. Эти патогены легко культивируются на питательных средах и поражают растения многих видов и таксономических групп. Типичный пример паразитов этой группы - возбудитель серой гнили. 2. Факультативные сапрофиты ведут в основном паразитический образ жизни на небольшом числе видов и реже - сапрофитный. К ним относится, например, - возбудитель фитофтороза картофеля. 3. Облигатные (обязательные) паразиты не могут существовать без растения-хозяина одного или близких родов. К облигатным паразитам относятся все вирусы, многие грибы-паразиты растений (например, - возбудитель бурой ржавчины пшениц), но не бактерии. В процессе сопряженной эволюции с растениями-хозяевами паразиты этого типа выработали способность проникать в ткани растения-хозяина, минуя его защитные механизмы. По характеру питания эти же типы паразитов делят на некротрофов и биотрофов. Некротрофы (все факультативные паразиты и некоторые факультативные сапрофиты) поселяются на предварительно убитой ими ткани. Клетки растения-хозяина погибают под действием токсинов, выделяемых патогеном, а затем содержимое клеток расщепляется внеклеточными гидролитическими ферментами, также выделяемыми паразитом. Патогены воздействуют на растение-хозяина с помощью выделяемых гидролитических ферментов и токсинов. Ферменты растворяют компоненты клеточных стенок и срединные пластинки, облегчая тем самым внедрение паразита в ткани растения-хозяина и одновременно обеспечивая его питанием. Токсины, выделяемые некротрофами и убивающие ткани растения, называют фитотоксинами. Они не обладают специфичностью и способны повреждать многие растения. Вивотоксины выделяются патогеном в среду, если он является сапрофитом, и в ткани растения - при паразитической форме его существования. Эти токсины сами по себе могут индуцировать ряд симптомов болезни. Но наиболее полно симптомы болезни (без патогена) вызываются токсинами паразита, заражающего данный вид, т.е. специфичными к данному растению-хозяину (патотоксинами). Агрессивность патогенов выражает степень поражения ими восприимчивых растений и определяется скоростью роста паразита, факторами внешней среды и др. Вирулентность и агрессивность отражают качественную и количественную характеристику патогенности паразита по отношению к растению-хозяину |