Главная страница

шпоры ткх. 2. Значение технохимического контроля для рационального ведения технологического процесса


Скачать 331.97 Kb.
Название2. Значение технохимического контроля для рационального ведения технологического процесса
Дата20.02.2018
Размер331.97 Kb.
Формат файлаdocx
Имя файлашпоры ткх.docx
ТипДокументы
#36864
страница5 из 8
1   2   3   4   5   6   7   8

45. Методы определения показателей безопасности (тяжелые металлы, пестициды, нитраты, радионуклиды) в сырье, полуфабрикатах и готовой продукции

Под безопасностью продуктов питания следует понимать отсутствие опасности для здоровья человека при их употреблении, как с точки зрения острого негативного воздействия (пищевые отравления и пищевые инфекции), так и с точки зрения опасности отдаленных последствий (канцерогенное, мутагенное и тератогенное действие).


С продуктами питания в организм человека могут поступать значительные количества веществ, опасных для его здоровья. Поэтому остро стоят проблемы, связанные с повышением ответственности за эффективность контроля качества пищевых продуктов, гарантирующих их безопасность для здоровья потребителя.

Токсичные элементы (в частности тяжелые металлы) составляют обширную и весьма опасную в токсикологическом отношении группу веществ. Обычно рассматривают 14 элементов: Hg, Pb, Cd, As, Sb, Sn, Zn, Al, Be, Fe, Cu, Ba, Cr, Tl.

Современные методы обнаружения и определения содержания микотоксинов в пищевых продуктах и кормах включают скрининг – методы - количественные аналитические и биологические методы.

Скрининг – методы отличаются быстротой и удобны для проведения серийных анализов, позволяют быстро и надежно разделять загрязненные и незагрязненные образцы. К ним относятся такие широко распространенные методы, как миниколоночный метод определения афлатоксинов, охратоксина А и зеараленона; методы тонкослойной хроматографии (ТСХ-методы) для одновременного определения до 30 различных микотоксинов, флуоресцентый метод определения зерна, загрязненного афлатоксинами, и некоторые другие.

Количественные аналитические методы определения микотоксинов представлены химическими, радиоиммунологическим и иммуноферментными методами. Химические методы являются в настоящее время наиболее распространенными.

Консерванты – это вещества, подавляющие развитие микроорганизмов и применяемые для предотвращения порчи продуктов. В больших концентрациях эти вещества опасны для здоровья, поэтому Минздравом России определены предельно допустимые количества их в продуктах и установлена необходимость контроля за их содержанием.

Определение диоксида серы. В ГОСТе описаны два метода определения: дистилляционный и йодометрический.

Дистилляционный метод с предварительной отгонкой диоксида серы применяется при определении малых количеств вещества, а также при арбитражных анализах; йодометрический, сравнительно простой, но менее точный метод, используют при определении диоксида серы с массовой долей его в продукте более 0,01%.

Дистилляционный метод основан на вытеснении свободного и связанного диоксида серы из продукта ортофосфорной кислотой и перегонке в токе азота в приемники с пероксидом водорода, где диоксид серы окисляется до серной кислоты. Количество полученной серной кислоты определяют ацидометрически – титрованием раствором гидроксида натрия или комплексонометрически – титрованием раствором трилона Б в присутствии эриохрома черного Т.

Йодометрический метод заключается в высвобождении связанного диоксида серы при обработке щелочью вытяжки из навески продукта с последующим оттитровыванием раствором йода. По количеству израсходованного на титрование йода определяют общее количество диоксида серы.

При определении сорбиновой кислоты используют либо спектрофотометрический, либо фотоколориметрический метод. Оба метода основаны на отгонке сорбиновой кислоты из навески анализируемого продукта в токе пара с последующим определением ее либо путем измерения оптической плотности отгона на спектрофотометре, либо после получения цветной реакции – на фотоэлектроколориметре.

Среди тяжелых металлов наиболее опасны свинец, кадмий, ртуть и мышьяк.

Поскольку металлы в пищевых продуктах находятся в связанном состоянии, непосредственное их определение невозможно. Поэтому первоначальной задачей химического анализа тяжелых металлов является удаление органических веществ – минерализация (озоление) рекомендуется при определении Cu, Pb, кадмия, Zn, Fe, мышьяка.

Для определения содержания Cu, кадмия и Zn используют метод полярографии.

Для олова – фотометрический метод, который основан на измерении интенсивности желтой окраски раствора комплексного соединения с кверцетином. Для определения используют минерализат, полученный мокрой минерализацией навески пробы продукта массой 5-10 г.

Также фотометрические методы исследования применяют при определении Cu, Fe, мышьяка.

Для определения ртути применяют колориметрический или атомно-абсорбционный метод, который основан на окислении ртути в двухвалетный ион в кислой среде и восстановлении ее в растворе до элементного состояния под воздействием сильного восстановителя.

46. Методы определения минеральных веществ (зола, микро- и макроэлементы, хлориды) в сырье, полуфабрикатах и готовой продукции

В зависимости от количества минеральных веществ в организме человека и пищевых продуктах их подразделяют на макро- и микроэлементы. Так, если массовая доля элемента в организме превышает 10-2 %, то его следует считать микроэлементом. Доля микроэлементов в организме составляет 10-3-10-5 %. Если содержание элемента ниже 10-5 % , его считают ультрамикроэлементом.

К макроэлементам относят калий, натрий, кальций, магний, фосфор, хлор, серу.

Микроэлементы условно делят на две группы: абсолютно или жизненно необходимые (кобальт, железо, медь, цинк, марганец, йод, бром, фтор) и, так называемые, вероятно необходимые (алюминий, стронций, молибден, селен, никель, ванадий и некоторые другие). Микроэлементы называют жизненно необходимыми, если при их отсутствии или недостатке нарушается нормальная жизнедеятельность организма. К наиболее дефицитным минеральным веществам в питании современного человека относятся кальций и железо, к избыточным – натрий и фосфор.

При переработке пищевого сырья, как правило, происходит снижение содержания минеральных веществ (кроме добавления пищевой соли). В растительных продуктах они теряются с отходами. Так, содержание ряда макро- и микроэлементов при получении крупы и муки после обработки зерна снижается, так как в удаляемых оболочках и зародышах этих компонентов находится больше, чем в целом зерне. Например, в среднем, в зерне пшеницы и ржи зольных элементов содержится около 1,7%, в муке же в зависимости от сорта от 0,5 (в высшем сорте) до 1,5% (в обойной).

При очистке овощей и картофеля теряется от 10 до 30% минеральных веществ. Если их подвергают тепловой обработке, то в зависимости от технологии теряется еще от 5 до 30%.

Мясные, рыбные продукты и птица в основном теряют такие макроэлементы, как кальций и фосфор, при отделении мякоти от костей. При тепловой обработке (варке, жарке, тушении) мясо теряет от 5 до 50% минеральных веществ.

Для анализа минеральных веществ в основном используются физико-химические методы – оптические и электрохимические.

Практически все эти методы требуют особой подготовки проб для анализа, которая заключается в предварительной минерализации объекта исследования. Минерализацию можно проводить двумя способами: «сухим» и «мокрым». «Сухая минерализация предполагает проведение при определенных условиях обугливания, сжигания и прокаливания исследуемого образца. «Мокрая» минерализация предусматривает еще и обработку объекта исследования концентрированными кислотами (чаще всего HNO3 и H2SO4).

Наиболее часто применяемые методы исследования минеральных веществ, представлены ниже.

Фотометрический анализ (молекулярная абсорбционная спектроскопия). Он используется для определения меди, железа, хрома, марганца, никеля и других элементов. Метод абсорбционной спектроскопии основан на поглощении молекулами вещества излучений в ультрафиолетовой, видимой и инфракрасной областях электромагнитного спектра. Анализ можно проводить спектрофотометрическим или фотоэлектроколориметрическим методами.

Эмиссионный спектральный анализ. Методы эмиссионного спектрального анализа основаны на измерении длины волны, интенсивности и других характеристик света, излучаемого атомами и ионами вещества в газообразном состоянии. Эмиссионный спектральный анализ позволяет определить элементарный состав неорганических и органических веществ.

Интенсивность спектральной линии определяется количеством возбужденных атомов в источнике возбуждения, которое зависит не только от концентрации элемента в пробе, но и от условий возбуждения. При стабильной работе источника возбуждения связь между интенсивностью спектральной линии и концентрацией элемента (если она достаточно мала) имеет линейный характер, т.е. в данном случае количественный анализ можно также проводить методом градуировочного графика.

Наибольшее применение в качестве источника возбуждения получили электрическая дуга, искра, пламя. Температура дуги достигает 5000-60000С. В дуге удается получить спектр почти всех элементов. При искровом разряде развивается температура 7000-10 0000С и происходит возбуждение всех элементов. Пламя дает достаточно яркий и стабильный спектр испускания. Метод анализа с использованием в качестве источника возбуждения пламени называют пламенно-эмиссионный анализом. Этим методом определяют свыше сорока элементов (щелочные и щелочно-земельные металлы, Cu2+, Mn2+ и др.).

Атомно-абсорбционная спектроскопия. Данный метод основан на способности свободных атомов элементов в газах пламени поглощать световую энергию при характерных для каждого элемента длинах волн.

В атомно-абсорбционной спектроскопии практически полностью исключена возможность наложения спектральных линий различных элементов, т.к. их число в спектре значительно меньше, чем в эмиссионной спектроскопии.

Уменьшение интенсивности резонансного излучения в условиях атомно-абсорбционной спектроскопии экспоненциальному кону убывания интенсивности в зависимости от толщины слоя и концентрации вещества, аналогичному закону Бугера-Ламберта-Бера

lg J/J0 = A = klc, (3.10)

где J0 – интенсивность падающего монохроматического света;

J – интенсивность прошедшего через пламя света;

k – коэффициент поглощения;

l – толщина светопоглощающего слоя (пламени);

с – концентрация.

Постоянство толщины светопоглощающего слоя (пламени) достигается с помощью горелок специальной конструкции.

Методы атомно-абсорбционного спектрального анализа находят широкое применение для анализа практически любого технического или природного объекта, особенно в тех случаях, когда необходимо определить небольшие количества элементов.

Методики атомно-абсорбционного определения разработаны более чем для 70 элементов.

Кроме спектральных методов анализа широкое применение нашли электрохимические методы, из которых выделяются нижеперечисленные.

Ионометрия. Метод служит для определения ионов K+, Na+, Ca2+, Mn2+, F-, I-, Cl- и т.д.

Метод основан на использовании ионоселективных электродов, мембрана которых проницаема для определенного типа ионов (отсюда, как правило, высокая селективность метода).

Количественное содержание определяемого иона проводится либо с помощью градуировочного графика, который строится в координатах Е-рС, либо методом добавок. Метод стандартных добавок рекомендуется использовать для определения ионов в сложных системах, содержащих высокие концентрации посторонних веществ.

Полярография. Метод переменно-токовой полярографии используют для определения токсичных элементов (ртуть, кадмий, свинец, медь, железо).
1   2   3   4   5   6   7   8


написать администратору сайта