9. Принцип работы первичных преобразователей для измерения
расхода газа и его влажности.
Первичные приборы, датчики или первичные преобразователи предназначены для непосредственного преобразования измеряемой величины в другую величину, удобную для измерения или использования. Выходными сигналами первичных приборов, датчиков являются как правило унифицированные стандартизованные сигналы, в противном случае используются нормирующие преобразователи.
Нормирующий преобразователь НП применяется, также в следующих случаях: когда необходимо подать сигнал измеряемой величины на несколько измерительных или регулирующих приборов; а также когда необходимо передать сигнал на большие расстояния, например сигнал от термопары передается немалые расстояния - до 10м, а унифицированный сигнал постоянного тока может передаваться на большие расстояния - до 100м.В современных промышленных регуляторах нормирующий преобразователь НП как правило является обязательной составной частью входного устройства регулятора. 10. Выбрать датчики и приборы для системы регулирования
соотношения “газ-воздух”в топку котла.
Оператор вручную меняет давление подаваемого газа. Автоматика по
заложенному графику регулирует давление воздуха перед горелкой (горелками). После достижения необходимого уровня давления происходит корректировка в зависимости от концентрации кислорода в уходящих газах за котлом. 11. Дистанционный контроль и сигнализация давления на выкидной
линии скважины с ЭЦН.
Автоматизацией ШСНУ предусматривается управление, противоаварийная защита, контроль и диагностика установки. Средствами автоматизации ШСНУ являются: - датчики динамометрирования, ваттметрирования, давления, уровня, несанкционированного доступа к станции управления либо стационарные системы динамометрирования («ДДС-06», «СДА-10»), измерения уровня жидкости в скважине («Микон-811) и др.; - блок управления станком-качалкой, предназначенный для управления и защиты электродвигателя и обеспечивающий: · Аварийное отключение электродвигателя станка-качалки; · Самозапуск станка-качалки через установленное время после отключения, если был перерыв в снабжении электроэнергией; · Включение и отключение по заданной программе. В настоящее время применяются блоки управления станками, оснащённые специальным микропроцессорным устройством вводв/вывода сигналов – контроллером (специальный компьютер в индустриальном исполнении). 12. Выбрать технические средства для регулирования межфазного уровня (нефть-вода) и влагосодержания после электродегидратора. Емкостные уровнемеры Liquicap M FMI 51, FMI 52 (Endress Hauser) - емкостные уровнемеры для непрерывного измерения уровня и межфазный измерений жидкостей. Экономичное двухпроводное подключение. Применение во взрывоопасных зонах. Компактный преобразователь Liquicap M используется для непрерывного измерения уровня жидкостей. Благодаря надежной и испытанной конструкции самоуплотняющегося конуса, зонд может использоваться как в вакууме, так и при избыточном давлении до 100 бар. Уплотняющие и изолирующие материалы позволяют использовать прибор в резервуарах с измеряемой средой при рабочих температурах от -80 °C до +200 °C. Измерение не зависит от диэлектрической проницаемости (DK), если ее электропроводность более 100 мкСм/см. Таким образом, возможно производить измерения уровня различных жидкостей без перекалибровки прибора. При использовании вместе с прибором Fieldgate (удаленный запрос измеренных значений с использованием интернет-технологий), Liquicap M представляет собой идеальное решение для учета запасов и оптимизации материально-технического снабжения (управления запасами). 13. Выбрать аппаратуру для контроля и регулирования давления газа в
газосепараторе.
В датчиках на базе емкостного сенсора давление процесса через разделительные мембраны (мембрану в датчиках избыточного давления) и заполняющую жидкость передается на измерительную мембрану, расположенную между пластинами конденсатора. Под воздействием измеряемого давления мембрана прогибается и в результате изменяется электрическая емкость ячеек, образованных
сенсорной мембраной и пластинами конденсатора.
Генерируемый электрический сигнал преобразуется в цифровой и передается на микроконтроллер.
Сенсорный модуль датчиков 3051 имеет встроенный термометр для коррекции и учета температурных эффектов. Во время процедуры характеризации на заводе все сенсоры
подвергаются воздействию температур и давления во всем рабочем диапазоне. В результате характеризации коэффициенты корекции заносятся в ПЗУ и используются для коррекции выходного сигнала при работе датчика в условиях эксплуатации. Схема электронного преобразователя позволяет быстро и удобно производить тестирование и конфигурирование датчика с помощью коммуникатора модели 375, Метран/650. Двухсекционная конструкция электронного блока позволяет выполнить подключение к клеммам без нарушения целостности электронных схем. По заказу может быть установлен ЖК/индикатор, который выводит цифровые значения сигнала в физических единицах или процентах от диапазона измерений. ЖК/индикатор используется как в стандартных, так и в экономичных датчиках. 14. Выбор преобразователя давления на выходе компрессорной станции
с выводом сигнала на микропроцессорный контроллер.
Цифровые, интеллектуальные датчики давления ДМ5007-3151 предназначены для преобразования избыточного, дифференциального и абсолютного давления, разрежения, давления-разрежения в электрический унифицированный выходной сигнал постоянного тока, а также цифровой сигнал в формате HART-протокола с отображением измеренного значения давления на ЖК-дисплее. Диапазон измерения от 3кПа до 40МПа. Пределы допускаемой основной погрешности: ±0,075; 0,05; 0,1; 0,15; 0,25%. Напряжение питания: 1245В. Диапазон температур окружающей среды: от -40 до +85 °С, от -20 до +70 °С (с ЖКИ). Контролируемые среды – неагрессивные некристаллизующиеся жидкости, газы и пары, в т.ч. кислород.
Сенсорный блок включает в себя емкостной чувствительный элемент, электронную схему, преобразующую изменение емкости в цифровой сигнал, датчик температуры и энергонезависимую память, хранящую информацию о настройках. Ёмкостные преобразователи используют метод изменения ёмкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые ёмкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью. Недостаток — нелинейная зависимость емкости от приложенного давления. 15. Выбрать измерительную аппаратуру для измерения и сигнализации
уровня в сепараторе.
В настоящее время существует обширный ряд технических средств, приборов решающих задачу измерения и контроля уровня в промышленном производстве. Приборы для измерения уровняреализуют разнообразные методы, основанные на различных физических принципах. Наиболее распространенные методы измерения уровня, позволяющие преобразовывать значение уровня в электрические величины и производить автоматизацию производственных процессов это:
Поплавковый
При поплавковом методе индикатором уровня служит поплавок. Для передачи информации от чувствительного элемента используются различные виды связи. Как правило, поплавок снабжен магнитом и заключен в измерительную трубу либо скользит по направляющему стержню. Магнит может влечь за собой ползунок реостата (как, например, в уровнемерах типа ВМ-26 ). Изменение сопротивления преобразуется в электрический выходной сигнал, что дает помимо визуального контроля возможность дистанционной передачи показаний и включения в систему автоматизации.
Ряд поплавковых уровнемеров используют магнитострикционный эффект ( РУПТ-А, РУПТ-АМ, ДУУ2, ДУУ4 ). При этом направляющий поплавок стержень содержит волновод, заключенный в катушку, по которой подаются импульсы тока. Под действием магнитных полей тока и двигающегося магнита в волноводе возникают импульсы продольной деформации, распространяющиеся по волноводу и принимаемые пьезоэлементом вверху стержня. Прибор анализирует время распространения импульсов и преобразует его в выходные сигналы.
Герконовые уровнемеры (например, ПМП-062), содержат в теле направляющего стержня цепочку герконов, замыкаемых движущимся магнитом. Дискретность измерения уровня таких приборов – около 5 мм.
Важной характерной особенностью поплавковых уровнемеров, является высокая точность измерений (+/- 1…5 мм.) . Достаточно широка область применения этого метода. Метод явно неприменим только в средах, образующих налипание, отложение осадка на поплавок, а также коррозию поплавка и конструкции чувствительного элемента (ЧЭ). Температура рабочей среды: - 40…120 ºС, избыточное давление: до 2 МПа, для преобразователей с гибким ЧЭ - до 0,16 МПа. применением поплавковых уровнемеров является измерение уровня топлива, масел, легких нефтепродуктов в относительно небольших емкостях и цистернах в процессе коммерческого учета.
Емкостной метод – более простой и дешевый. Он обеспечивает хорошую точность порядка 1,5 %, имеет те же ограничения, что и поплавковый - среда не должна налипать и образовывать отложения на ЧЭ. Вместе с тем, в отличие от поплавкового, он применим как для жидких, так и для сыпучих сред (размер гранул – до 5 мм.). Характерным принципиальным ограничением для емкостного метода является – однородность среды, среда должна быть однородной, по крайней мере, в зоне расположения ЧЭ.
ЧЭ емкостного уровнемера представляет собой конденсатор, обкладки которого погружены в среду. Он может быть выполнен в виде двух концентрических труб, пространство между которыми заполняется средой, либо в виде стержня, при этом роль второй обкладки играет металлическая стенка емкости. В случае проводящей жидкости ЧЭ покрывается изолятором, обычно фторопластом. Изменение уровня жидкости приводит к изменению емкости ЧЭ, преобразуемой в выходной электрический сигнал.
Условия применения емкостных датчиков по характеристикам рабочей среды: температура -40…+200 ºС, давление – до 2,5 МПа, диапазон измерения – до 3м. (30 м. – для гибких и тросовых ЧЭ).
Широко распространены такие модели емкостных датчики как РИС-101,ИСУ-100,ДУЕ-1, Multicup. Для датчиков ДУЕ-1 разработан широкий спектр модификаций предусматривающих применение в различных средах, в том числе агрессивных взрывоопасных, в различных температурных и климатических условиях при разных физических состояниях контролируемой среды. На один из входов, подсоединяемый к емкости подается давление среды. Другой вход соединяется с атмосферой - в случае открытой емкости без избыточного давления или соединяется с областью избыточного давления в случае закрытой емкости под давлением.
Конструктивно гидростатические датчики бывают двух типов: мембранные и колокольные (погружные). В первом случае тензорезистивный или емкостной датчик непосредственно соединен с мембраной и весь прибор находится внизу емкости, как правило, сбоку на фланце, при этом расположение ЧЭ (мембраны) соответствует минимальному уровню. ( Сапфир-ДГ, Метран-100-ДГ, 3051 L ). В случае колокольного датчика чувствительный элемент погружен в рабочую среду и передает давление жидкости на тензорезистивный сенсор через столб воздуха запаянный в подводящей трубке ( УГЦ-1.1, УГЦ-1.2 ) .
Гидростатические уровнемеры применяются для однородных жидкостей в емкостях без существенного движения рабочей среды. Они позволяют производить измерения в диапазоне до 250 КПа, что соответствует (для воды) 25-и метрам, с точностью до 0,1% при избыточном давлении до 10 МПа и температуре рабочей среды: – 40..+120°С. Гидростатические уровнемеры могут использоваться для вязких жидкостей и паст. Важным достоинством гидростатических уровнемеров является высокая точность при относительной дешевизне и простоте конструкции.
Буйковые уровнемеры . На тонущий буек действует в соответствии с законом Архимеда выталкивающая сила, пропорциональная степени погружения и, соответственно, уровню жидкости. Действие этой силы воспринимает тензопреобразователь (уровнемеры типа Сапфир-ДУ), либо индуктивный преобразователь ( УБ-ЭМ ), либо заслонка, перекрывающая сопло (пневматические уровнемеры типа ПИУП).
Буйковые уровнемеры предназначены для измерения уровня в диапазоне – до 10 м. при температурах – 50..+120ºС (в диапазоне +60..120ºС при наличии теплоотводящего патрубка, при температурах 120..400°С приборы работают как индикаторы уровня) и давлении до 20 МПа, обеспечивая точность 0,25..1,5%. Плотность контролируемой жидкости: 0,4…2 г/см3.
Буйковые уровнемеры часто применяются для измерения уровня раздела фаз двух жидкостей. Возможно, также, их использование для определения плотности рабочей среды при неизменном уровне.
Каждый метод имеет характерный набор технических реализаций, расширяющийся с развитием измерительной техники. Методы, используемые для сигнализации наличия (отсутствия) рабочей среды часто те же что и для измерения уровня, однако, существуют и отличия (например, кондуктометрические сигнализаторы уровня). 16. Выбрать измерительную аппаратуру для расхода нефти на установке
стабилизации.
Стабилизацию нефти осуществляют на промыслах с целью сокращения потерь от испарения при транспортировке ее до НПЗ. Кроме того, присутствие в нефтях газов способствует образованию в трубопроводах газовых пробок, которые затрудняют перекачивание.
Процесс стабилизации осуществляется в специальных стабилизационных колоннах под давлением и при повышенных температурах. После отделения легких углеводородов из нефти последняя становится стабильной и может транспортироваться до нефтеперерабатывающих заводов без потерь. Отделившись в стабилизационной колонне, легкие фракции конденсируются и перекачиваются на газофракционирующие установки или газобензиновые заводы для дальнейшей переработки. 17. Выбрать аппаратуру для измерения расхода пара на испарпитель.
Несмотря на анонсирование производителями серийно выпускаемых типов ультразвуковых расходомеров как приборов, которые могут применяться для измерения расхода пара, в этой сфере, в отличие от измерения расходов газов и жидкостей, успешного применения они пока что не нашли. Дело в том, что устройства реализуют доплеровский принцип измерений, который основывается на изменении частоты ультразвукового луча. Но при измерениях сухого насыщенного или перегретого пара этот принцип не может быть применен, так как поток не имеет неоднородностей, от которых луч может отражаться. А измерения влажного пара так же неэффективны из-за больших занижений показателей, происходящих вследствие различия между скоростями жидкой и газовой фаз. Подобные же расходомеры импульсного типа неприемлемы при измерении влажного пара из-за обратной проблемы – преломления, рассеивания и отражения лучей от капель воды. Измерение расхода пара при помощи вихревых расходомеров Точность измерения расхода пара вихревыми расходомерами различных производителей неодинакова. Зависит это как от программного обеспечения, так и от конструкции первичного преобразователя расхода, электронной схемы и принципа детектирования вихрей. Принципиально и то, как на чувствительный элемент влияет наличие конденсата. Серьезную проблему для некоторых конструкций представляет и одновременное существование в трубопроводе жидкой и газовой фаз. Датчики давления, установленные вровень со стенкой трубы, не могут нормально функционировать из-за концентрации воды вдоль стенок трубопровода. А в иных конструкциях конденсат может затопить сенсор и тем самым совсем заблокировать измерение расхода. Но для некоторых расходомеров такие процессы сосем не влияют на показания. 18. Выбрать технические средства, обеспечивающие контроль и
регулирование параметров в КРД на НПС.
Сенсорный блок включает в себя емкостной чувствительный элемент, электронную схему, преобразующую изменение емкости в цифровой сигнал, датчик температуры и энергонезависимую память, хранящую информацию о настройках. Ёмкостные преобразователи используют метод изменения ёмкости конденсатора при изменении расстояния между обкладками. Известны керамические или кремниевые ёмкостные первичные преобразователи давления и преобразователи, выполненные с использованием упругой металлической мембраны. При изменении давления мембрана с электродом деформируется и происходит изменение емкости. В элементе из керамики или кремния, пространство между обкладками обычно заполнено маслом или другой органической жидкостью. Недостаток — нелинейная зависимость емкости от приложенного давления. Характеристика выходного сигнала программируется в соответствии с ребуемой функцией преобразования давления: линейная или изменяющаяся по закону квадратного корня. Номинальная статическая характеристика датчика с линейно-возрастающей зависимостью аналогового выходного сигнала от давления на входе. Электронный модуль содержит микропроцессор, цифро-аналоговый преобразователь (ЦАП), HART-модем, конфигурационную память EEPROM и ЖК-дисплей.
Микропроцессор управляет работой датчика. Он обрабатывает данные, полученные от сенсорного блока, выполняет все необходимые вычисления, включая линеаризацию и температурную компенсацию погрешности сенсорного блока, обеспечивает вывод данных на дисплей и по HART-протоколу, формирует данные пропорциональные выходному токовому сигналу, выполняет калибровку, конфигурирование и тестирования датчика. Цифро-аналоговый преобразователь (ЦАП) преобразует цифровой сигнал, поступающий с микропроцессора, в выходной аналоговый токовый сигнал.
HART-модем предназначен для выделения HART-сигнала из токовой петли (4-20) мА и преобразования его в стандартный цифровой сигнал, а также для осуществления обратной операции - преобразования цифрового сигнала в HART-сигнал и наложения его на аналоговый токовый сигнал (4-20) мА. Настройка и калибровка датчиков осуществляется по цифровому каналу связи. |