Экол.гальванопроизводств vinogradov_03. Библиотечка гальванотехника
Скачать 0.98 Mb.
|
© Рис.4.7. Схема процесса электро диализ а: К - катионитовые мембраны, А - анионитовые мембраны, (-) - катод, (+ ) - анод. Рис. 4.8. Принципиальная схема электродиализной очистки промывных и сточных вод: 1-накопитель стоков, 2-насос, 3-механический фильтр, 4-сорбционный фильтр, 5-электродиализатор, 6-выпрямитель. 203 Очистка сточных вод в электродиализаторах ведется при следующих условиях: величина pH сточной воды 4-9 начальная концентрация ионов тяжелых металлов до 100 мг/л конечная концентрация ионов тяжелых металлов до 0,1 мг/л солесодержание в сточной воде, мг/л 100-5000 плотность тока, А/дм2 0,8-1,8 скорость потока, л/мин 0,5-0,7 температура, °С 18-30. Периодически электродиализный комплекс промывается серной кислотой. Эта операция позволяет содержать электродиализатор в работоспособном состоянии и избегать избыточного электросопротивления от образования пленки солей на мембранах. Известны примеры обработки промывных хромсодержащих вод электродиализом.
Процессы обратного осмоса и ультрафильтрации основаны на способности молекул воды проникать через полупроницаемые мембраны. Осмос - самопроизвольный переход воды в раствор (например, сточные воды), отделенный от него полупроницаемой мембраной, при этом со стороны воды возникает осмотическое давление (рис.4.9 "а"). Уровень раствора повышается до тех пор, пока разница в уровнях не уравновесит осмотическое давление (рис.4.9 "б"). При приложении к раствору давления (р), превышающего осмотическое давление (п), возникает обратный ток воды через полупроницаемую мембрану. При этом с противоположной стороны мембраны можно получить очищенную воду. На рис.4.9."в" представлена схема условий возникновения обратного осмоса. Это явление приводит к тому, что из стоков удаляется вода, а в стоках концентрируются ионы тяжелых металлов и другие загрязнения. Этот механизм справедлив как для обратноосмотических (гиперфильтрационных), так и для ультрафильтрационных установок. Отличие заключается в практической реализации этих методов. При обратном осмосе отделяются частицы (молекулы, гидратированные ионы), размеры 204 которых сравнимы с размерами молекул воды (диаметр частиц 0,0001-0,001 мкм). В обратноосмотических установках используют полупроницаемые мембраны толщиной 0,1-0,2 мкм с порами 0,001 мкм под давлением 6-10 МПа. При ультрафильтрации размер отделяемых частиц на порядок больше (диаметр частиц 0,001-0,02 мкм). В ультрафильтрационных установках применяют полупроницаемые мембраны с порами 0,005-0,2 мкм под давлением 0,1-0,5 МПа. полупроницаемые мембраны Рис.4.9. Схема условий возникновения обратного осмоса: (стрелки показывают направление движения воды) "а" - осмос, "б" - равновесие, "в" - обратный осмос. Предложено несколько вариантов механизма обратного осмоса. По одному из них мембраны собирают воду, которая в тонком слое на поверхности мембраны не обладает растворяющей способностью. Если толщина слоя адсорбированных на поверхности мембраны (в том числе и на внутренней поверхности пор) молекул воды составляет половину или более диаметра пор мембраны, то под давлением через поры будет проходить только чистая вода, несмотря на то, что размер многих ионов меньше, чем диаметр пор. Проникновению таких ионов через поры препятствует возникающая у них гидратная оболочка (рис.4.10). Размер гидратных оболочек различен у разных ионов. Если толщина адсорбированного слоя молекул воды меньше половины диаметра пор, то вместе с водой через мембрану будут проникать и растворенные вещества. 205
частицы загрязнения с пщраткой оболочкой мембрана поверхностный спои адсорбированных молекул воды Рис.4.10. Схема механизма обратного осмоса. Наибольшее распространение получили мембраны из ацетилцеллюлозы, устойчивые при давлениях до 10 МПа, температурах 0-30 °С, pH 3-8. При 50 °С ацетилцеллюлозные мембраны разрушаются. Наиболее перспективными являются мембраны марки УАМ для ультрафильтрации и марки МГА для гиперфильтрации. За рубежом, в частности в Великобритании, распространены три основных типа материалов мембран: разновидности ацетата целлюлозы, полиамидный полимер и сложные композиционные мембраны, представляющие собой тонкие пленки полиамида, накладываемые на пористый полимерный субстрат, например полисульфон. При очистке промышленных стоков гальванических производств используются 206 мембраны на основе акрилового сополимера с добавлением найлона для придания прочности. Мембраны из ацетата целлюлозы и композиционные мембраны, как правило, применяются в виде плоских листов, тогда как полиамидные мембраны - в виде тонких полых волокон. Процесс мембранного разделения зависит от давления, гидродинамических условий и конструкции аппарата, природы и концентрации загрязнений в сточных вод, а также от температуры. Увеличение концентрации раствора приводит к росту осмотического давления растворителя, повышению вязкости раствора и росту концентрационной поляризации, т.е. к снижению проницаемости и селективности. Обратный осмос рекомендуется использовать при следующей концентрации стоков: для одновалентных солей - не более 5-10 %; для двухвалентных - 10-15 %; для многовалентных - 15-20 %. Для уменьшения влияния концентрационной поляризации организуют рециркуляцию раствора и турбулизацию прилегающего к мембране слоя жидкости, применяя мешалки, вибрационные устройства и увеличение скорости движения жидкости вдоль поверхности мембраны. С повышением давления удельная производительность мембран увеличивается, так как растет движущая сила процесса. Однако при высоких давлениях происходит уплотнение материала мембран, что вызывает снижение проницаемости, поэтому для каждого вида мембран устанавливают оптимальное рабочее давление. С ростом температуры уменьшаются вязкость и плотность раствора, что способствует росту проницаемости. Однако при этом повышается осмотическое давление, которое уменьшает проницаемость. Кроме того, при повышении температуры начинается усадка и стягивание пор мембраны (что приводит к уменьшению проницаемости), а также возрастает скорость гидролиза материала мембраны, сокращая срок ее службы. Наиболее частые нарушения в работе мембран происходят из- за их гидролиза, кольматации (засорения) пор, бактериального воздействия или уплотнения мембранного материала. Аппараты для ультра- и гиперфильтрации подразделяются по способу укладки мембран на четыре типа: фильтр-пресс с плоскопараллельными фильтрующими элементами; с рулонными 207 или спиральными фильтрующими элементами; с мембранами в виде полых волокон. Рис.4.11. Принципиальная схема ультра- и гиперфильтрации (обратного осмоса): I-накопитель стоков, 2-насос, 3-механический фильтр, 4-накопитель стоков и концентрата 2-ой ступени, 5-обратноосмотический аппарат 1-ой ступени, 6- накопитель фильтрата 1-ой ступени, 7-обратноосмотический аппарат 2-ой ступени. Наибольшее распространение для очистки сточных вод гальванических производств получили двухступенчатые установки типа УГОС-1 и УГОС-2. На первой ступени происходит концентрирование сточных вод, полученный концентрат возвращается в производство. На второй ступени проводят дополнительную очистку фильтрата первой ступени. Производительность установки УГОС-1 по фильтрату на первой и второй ступенях составляет соответственно 95 и 70 л/ч, для установки УГОС-2 производительность составляет для первой ступени 630 л/ч, для второй ступени 450 л/ч. На рис.4.11, представлена принципиальная схема ультра- и гиперфильтрации (обратный осмос). 208
Электролиз является эффективным методом извлечения тяжелых, цветных, благородных и драгоценных металлов, в первую очередь Au, Ag, Си, Ni, Zn, Cd из разбавленных растворов электролитов. Катодное восстановление металлов происходит по схеме: Меп+ + пе- -» Ме°. Эффективность процесса существенно зависит от массопереноса, концентрации ионов металлов, плотности тока. В последнее время широкое практическое применение нашел электролиз на объемно-пористых электродах, позволяющий эффективно извлекать металлы из сильноразбавленных растворов электролитов - промывных вод. Установки для электрохимической регенерации типа ЭУ-1М обеспечивают извлечение цветных и благородных металлов из промышленных растворов и сточных вод с исходной концентрацией 0,02-2,0 г/л до остаточной концентрации менее 0,1 мг/л. Используются объемно-пористые электроды из волокнистых углеграфитовых материалов, сквозь поры которых прокачивается обрабатываемый раствор. Катодные и анодные камеры проточного кассетного типа, электродные пространства разделены ионообменными мембранами. Высокоразвитая реакционноактивная поверхность катодов позволяет увеличить производительность электролиза более, чем в 100 раз по сравнению с аппаратами с плоскими и пластинчатыми катодами при практически равных габаритных размерах. На рис.4.12 представлена принципиальная схема электролитической очистки. При циркуляции раствора сквозь объем электрода металл осаждается на углеграфитовом катоде. Электроды с осажденным металлом могут использоваться в качестве растворимых анодов в ванне нанесения покрытий. Электролизер может устанавливаться рядом с ванной улавливания или многоступенчатой каскадной ванной промывки. В этом случае наиболее экономически целесообразной концентрацией ионов тяжелых цветных металлов является 0,1-0,5 г/л. 209 Метод электролиза находит применение и для обезвреживания циансодержащих сточных вод и отработанных растворов с концентрацией цианидов более 200 мг/л. Очистку воды от цианидов проводят в бездиафрагменных открытых электролизерах непрерывного или периодического действия. В качестве анодов используют графитированный уголь в виде плит или стержней по ГОСТ 11256-73 или магнетит и РЬОг на титановой основе. Анодная плотность тока 0,5-2 А/дм2. Катоды - из легированных сталей. промывная вода 1 вода 1 на доочистку металл > на утилизацию Рис.4.12. Принципиальная схема электролитической очистки: 1-сборник промывной воды, 2-насос, 3-электролизер, 4-выпрямитель. При электролизе на аноде в щелочной среде происходит электрохимическое окисление CN- -ионов и комплексных анионов типа [Cu(CN)3]2-, [Zn(CN)4]2-: CN- + 20Н- - 2е CNO' + ШО [Cu(CN)3]2- + 60Н- - 6е Cu2+ + 3CNO- + ЗНгО 2CNO- + 40Н- 2СОг t + N21 + 2НгО + 6е CNO- + 2НгО NH4+ + СОз2- 40Н" - 4е —> 2НгО + Ог Т На катоде происходит образование водорода при разряде ионов Н+: 2Н+ + 2е Нг Т 210 или осаждение металлов при разряде ионов [Cu(CN)2]-, образующихся при диссоциации комплексных ионов [Cu(CN)3]2-: [Cu(CN)3]2- [Cu(CN)2]- + CN- [Cu(CN)2]- + e -> Cu° + 2CN- Для повышения электропроводности очищаемых сточных вод, снижения расхода электроэнергии, интенсификации процесса окисления цианидов добавляют NaCl в количестве 5-10 г/л, при электролизе которого образуется активный хлор (гипохлорит натрия), участвующий в процессе окисления цианидов: 2С1- - 2е -> С12 С12 + CN- + 20Н- -> CNO- + 2С1- + Н20 Реакция среды рН> 11, температура не более 40-50 °С, объёмная плотность тока 1-3 А/л, продолжительность обработки 20- 30 мин. Удельный расход электроэнергии 40 кВт-ч/м3. Преимуществами данного метода при обезвреживании циансодержащих сточных вод (по сравнению с реагентными) являются: компактность установки; простота эксплуатации; возможность автоматизации; степень очистки от цианидов практически 100 %-ная; утилизация металлов из сточных вод до 80 % (остальная часть металлов удаляется в виде гидроокисей); возможность обработки высоко концентрированных растворов. В качестве недостатков можно отметить загрязненность очищенных стоков активным хлором до 200 мг/л и невозможность интенсификации процесса путем повышения температуры реакционной среды. |