Главная страница
Навигация по странице:

  • 4.10. Метод жидкостной экстракции

  • Ме 2+ вод. + zHRopr. MeRz орг. + zH +


  • (

  • СН

  • (С4ШО)зРО;

  • НзО

  • ].

  • Экол.гальванопроизводств vinogradov_03. Библиотечка гальванотехника


    Скачать 0.98 Mb.
    НазваниеБиблиотечка гальванотехника
    АнкорЭкол.гальванопроизводств vinogradov_03.docx
    Дата17.03.2018
    Размер0.98 Mb.
    Формат файлаdocx
    Имя файлаЭкол.гальванопроизводств vinogradov_03.docx
    ТипКнига
    #16825
    страница34 из 44
    1   ...   30   31   32   33   34   35   36   37   ...   44

    Адсорбционный метод

    Сорбцией называют процесс поглощения твердым телом или жидкостью (сорбентом) какого-либо вещества из окружающей среды. Различают три основные разновидности сорбции - адсорбцию, абсорбцию и хемосорбцию.

    Адсорбция - поглощение вещества из газовой или жидкой среды поверхностным слоем твердого тела или жидкости (адсорбента).


    211





    Абсорбция - поглощение какого-либо вещества из окружающей среды всей массой поглощающего тела (абсорбента). Абсорбция жидким абсорбентом какого-либо вещества из газовой смеси называется растворением. Абсорбция жидким абсорбентом какого-либо вещества из жидкой смеси называется экстракцией.

    Хемосорбция - поглощение вещества поверхностью какого- либо тела (хемосорбента) в результате образования химической связи между молекулами вещества и хемосорбента.

    Адсорбцию широко применяют для глубокой очистки сточных вод от растворенных органических веществ после биологической очистки, значительно реже - для очистки от ионов тяжелых металлов. Использование адсорбции для удаления гетерогенных примесей экономически не оправдано и не практикуется. Блок адсорбционной очистки, как правило, включают в схему на заключительной стадии обезвреживания воды, когда из неё отстаиванием, фильтрацией, коагуляцией уже удалена основная масса взвешенных частиц, эмульгированных смол и масел, и вода освобождена от крупных мицелл коллоидных систем.

    Адсорбционная очистка эффективна во всем диапазоне концентраций примесей в воде, однако более всего её преимущества сказываются на фоне других методов очистки при низких концентрациях загрязнений. Основные области применения адсорбционных процессов в очистке воды - подготовка питьевой воды и доочистка сточных вод.

    При адсорбции из растворов происходит поглощение адсорбентом как молекул загрязнения так и воды. Кроме того при очистке водных растворов происходит конкуренция двух видов межмолекулярных взаимодействий: гидратация молекул загрязнителя, т.е. взаимодействие их с молекулами воды в растворе, и взаимодействие молекул загрязнителя с адсорбентом.

    Конкуренция процессов гидратации и адсорбции молекул загрязнителя и адсорбции молекул воды лежит в основе разграничения сорбентов для удаления из воды органических и неорганических веществ. Для адсорбции органических веществ применяют углеродные пористые материалы - активные угли, дробленые материалы различного органического происхождения: уголь, кокс, топливные шлаки, сорбенты на основе целлюлозы и резины, синтетические полимеры. Полярные гидрофильные материалы - иониты, глины, силикагели, алюмогель, цеолиты,


    212





    оксиды и гидроксиды для адсорбции органических веществ малопригодны, так как величина энергии взаимодействия их с молекулами воды равна величине энергии сорбции молекул органических загрязнений или превышает её. Эти гидрофильные материалы используют для удаления из воды неорганических соединений, присутствующих в ней, как правило, в ионной форме.

    Наиболее универсальными из адсорбентов являются активированные угли. С их помощью возможно практически полное удаление из растворов почти всех органических соединений, а при определенных условиях и эффективная очистка воды от некоторых токсичных ионов неорганических веществ, в том числе ионов тяжелых металлов. Сорбционная емкость активированного угля по отношению к ионам тяжелых металлов значительно повышается в том случае, если уголь гранулируется, а затем на его поверхность наносится активный компонент, состоящий из тиолтриазинового производного. Для приготовления такого адсорбента гранулированный активированный уголь перемешивают в растворе или суспензии тиолтриазинового производного и доводят pH смеси до величины >3 в водной фазе.

    В качестве сорбента для извлечения ионов тяжелых металлов из сточных вод гальванических производств предлагается также использовать силикатный адсорбент, содержащий более 50 мас.% SiCh, например природный или синтетический цеолит. Обработку сточных вод проводят добавлением в неё цеолита при рН=5-9, образовавшийся осадок отделяют и высушивают. Вес адсорбента в осадке составляет 10-50 мас.%. Перед обработкой сточных вод цеолит хорошо измельчают для увеличения поверхности его контакта с жидкостью.

    Для извлечения простых или комплексных ионов тяжелых металлов из сточных вод можно использовать адсорбент, получаемый путем нагревания органического гумуса (предпочтительно смешанного с поливинилацетатом или желатином) при 200-250 °С в течение 1 ч в присутствии формальдегида или его производных (параформальдегида, гексаметилентетрамина и др.). В качестве источника органического гумуса предлагается использовать продукт ферментативного разложения избыточного активного ила, образующегося в результате биохимической очистки сточных вод. Поливинилацетат или желатин от 1 до 50 мас.ч. на 100 мас.ч. гумуса являются


    213





    связующими компонентами. Формальдегид или его производные используются в количестве 0,1-10 мас.ч. на 100 мас.ч. гумуса, причем наиболее предпочтительно применять их в виде водного раствора.

    Удаление солей тяжелых металлов из сточных вод может быть осуществлено при смешении этих вод с порошкообразным неорганическим материалом и ПАВ с последующим обжигом полученной смеси при 1000-1300 °С. В качестве порошкообразного неорганического материала может быть использована глина, тальк или каолин. В результате такой обработки образуется твердый продукт, не выделяющий тяжелых металлов при выщелачивании. Так, водный раствор, содержащий 100 мг/л хрома (VI), обрабатывают смесью, состоящей из 93-94 мас.% глины, 5 мас.% бентонита (в качестве связующего) и 1-2 мас.% ПАВ. После фильтрации и сушки при комнатной температуре твердый продукт покрывают глазурью и подвергают обжигу при 1230 °С в электропечи. Полученный материал не выделяет хрома при контакте с водой.

    В качестве адсорбента для очистки промывных хром содержащих вод предложено использовать фильтр с активированным углем. Сточные воды предварительно подкисляются до pH 1,5-2,0. Скорость фильтрации и pH среды меняются в зависимости от содержания Сг6+ и составляют соответственно 7 м/ч и pH 2 при концентрации Сг6+ до 5 мг/л и 0,1 м/ч и pH 1 при концентрации Сг6+ до 150 мг/л. Регенерацию адсорбента производят раствором серной кислоты. При регенерации адсорбента 15 %-ным раствором NaOH элюат содержит ион СЮ42' в виде Na2Cr04. После регенерации адсорбент отмывают водопроводной водой до pH 7-8.

    Калифорнийским технологическим институтом (США) запатентован магнитный сорбент для удаления ионов тяжелых металлов, а также анионов, таких как нитраты, фосфаты, бораты, фториды. Сорбент представляет собой гранулы магнетита, покрытые тонким слоем полисахарида, например хитозана. Хитозан является отходом переработки устриц, крабов, омаров, раков. Для приготовления сорбента хитозан растворяют в разбавленной НС1 при pH 1-3 и к полученному раствору добавляют FeCh, а затем щелочь до pH 8-9. В результате образуются гранулы Рез04, покрытые слоем затвердевшего хитозана. Содержание железа в сорбенте 90 и более мас.%, размер полученных гранул от 100 до 1000


    214





    Ангстрем. Хитозан образует хелатные соединения с ионами тяжелых металлов и анионами при диспергировании сорбента в сточных водах и перемешивании в течение 1 ч. После этого сорбент может быть удален из сточных вод осаждением в магнитном поле.

    Очистка сточных вод на гранулированных сорбентах проводится в адсорберах с плотным, взрыхленным, движущимся и псевдоожиженным слоем. Одно- и многослойные адсорберы с плотным слоем гранулированного активного угля работают с восходящим и нисходящим потоками воды, по параллельной и последовательной схемам.

    Сорбцию загрязнений на пылевидных сорбентах ведут либо в аппаратах с перемешиванием воздухом или мешалкой, либо на намывных фильтрах. Во всех случаях могут применяться одна или несколько последовательных ступеней с неограниченным числом параллельных технологических линий.

    На рис. 4.13 представлена принципиальная схема адсорбционной очистки сточных вод.


    кислота






    стоки






    очищенная вода


    шлам


    Рис. 4.13. Принципиальная схема сорбционной очистки сточных вод:

    1-накопитель стоков, 2-насос, 3-механический фильтр, 4-адсорбер, 5-дозатор кислоты (pH 1,5-2,0 для очистки от ионов хрома).



    4.10. Метод жидкостной экстракции


    Экстракцией называют процесс извлечения одного или нескольких компонентов из растворов или твердых тел с помощью избирательных растворителей (экстрагентов). В основе метода жидкостной экстракции лежит массообменный процесс, протекающий с участием двух взаимно нерастворимых или ограниченно растворимых жидких фаз, между которыми распределяется экстрагируемое вещество. Для повышения скорости процесса исходный раствор (сточную воду) и экстрагент приводят в тесный контакт. В результате взаимодействия фаз получаются экстракт - раствор извлекаемого компонента в экстрагенте и рафинат - остаточный исходный раствор (очищенная сточная вода), из которого с той или иной степенью полноты удален экстрагируемый компонент.

    Полученные жидкие фазы (экстракт и рафинат) отделяют друг от друга отстаиванием, центрифугированием или другими механическими способами. После этого производят извлечение экстрагируемого вещества из экстракта с целью возврата экстрагента в процесс экстракции путем реэкстракцей другим растворителем, а также выпариванием, дистилляцией, химическим взаимодействием или осаждением.

    Так как совершенно нерастворимых в воде жидкостей нет, то в процессе экстракции часть экстрагента растворяется в сточных водах, становясь при этом новым загрязнителем воды; поэтому необходимо извлекать экстрагент и из рафината. Потери экстрагента со сточными водами допустимы лишь при условии его растворимости в воде не выше ПДК и низкой стоимости экстрагента.

    В процессе очистки сточных вод от ионов тяжелых металлов методом жидкостной экстракции металлы переходят в органическую фазу, а затем в результате реэкстракции - из органической фазы (экстракт) в водный раствор. Таким образом достигается очистка сточных вод и концентрирование металла, т.е. создаются условия для его регенерации (например, электролизом).

    Органическая фаза содержит экстрагент и органическую жидкость - растворитель экстрагента (керосин, бензол, хлороформ, толуол и т.д.). В качестве экстрагентов используют органические


    216





    кислоты, эфиры, спирты, кетоны, амины и др., а реэкстрагентов - водные растворы неорганических кислот и оснований.

    Извлечение металлов из водной в органическую фазу проводят тремя способами: 1) катионообменной экстракцией - т.е. обменом извлекаемого катиона металла на катион экстрагента; 2) анионообменной экстракцией - т.е. обменом металлсодержащего аниона на анион экстрагента; 3) координационной экстракцией, при которой образуется координационная связь молекулы или иона экстрагента непосредственно с атомом (ионом) экстрагируемого металла.

    Катионообменная экстракция в общем виде описывается уравнением:

    Ме2+вод. + zHRopr. MeRz орг. + zH+

    где Me - металл валентностью z; R -кислотный остаток органической кислоты.

    Катионообменными экстрагентами являются кислоты жирного ряда типа RCOOH (например, карбоновые кислоты) с числом углеродных атомов в радикале от 7 до 9 и нафтеновые кислоты, которые получают из сырой нефти.

    Разновидностью катионообменной экстракции является экстракция комплексообразующими (хелатообразующими) экстрагентами. В этом случае экстракция происходит в результате ионного обмена и координации экстрагента с атомом (ионом) экстрагируемого металла с образованием внутрикомплексных соединений.

    В процессах анионообменной экстракции в качестве экстрагентов используют амины первичные RNH2;
    вторичные R2NH и третичные R3N (R-C7-C9). В аминах азот имеет неподеленную пару электронов, что дает возможность образовывать координационные соединения:

    R3N + НС1 -> [R3NH]C1;

    образующиеся при обработке кислотой соли аминов могут обменивать анион кислоты на металлсодержащие анионы, например

    2[R3NH]C1 + MeCU2- [R3NH]2. MeCU + 2C1-.


    217





    В щелочной среде амины могут находиться не в виде солей, способных обменивать анион, а в виде нейтральных молекул, поэтому их применяют только в кислых средах.

    Еще одним классом анионообменных экстрагентов являются четвертичные аммониевые основания (ЧАО) и их соли (ЧАС). ЧАО являются производными иона аммония (
    NH4)+: R4NOH. Наиболее употребимы такие ЧАС, как триалкил-бензиламмонийхлорид (C6H5CH2R.3N)C1, тетраалкиламмонийхлорид (R.4N)C1,

    триалкилметиламмонийхлорид (CH3R.3N)C1, где R - СлНгл+i, п=8-10. ЧАС способны экстрагировать металлсодержащие соли из кислых и щелочных растворов по типу реакции анионного обмена:

    шМеХ2- + z[R4N]mY m[R4N]zMeX + zY“-,

    где z - заряд металлсодержащего аниона МеХ; ш - заряд аниона 4AC(Y).

    К нейтральным экстрагентам относятся: 1) органические спирты общей формулы ROH (в углеродном радикале от 7 до 9 атом углерода); 2) кетоны R2CO, из которых наиболее широко используют метилизобутилкетон СН3СОС4Н9; 3) простые эфиры R2O [диэтиловый эфир (СгН5)гО]; 4) сложные эфиры, образующиеся при взаимодействии спиртов с неорганическими кислотами, например, трибутилфосфат - ТБФ (С4ШО)зРО; 5)

    триалкилфосфиноксид R3PO; 6) сульфоксид R2SO. Все эти экстрагенты имеют кислородсодержащие группы и являются полярными. Экстракция диэтиловым эфиром проходит по оксониевому типу. Сущность подобных реакций состоит в том, что ион водорода в водных сильнокислых растворах образует комплексный устойчивый ион - гидроксоний НзО+:

    НгО + Н+ = [ НгО -> Н ]+

    Стрелкой обозначена координационная связь. Такие же комплексные положительно заряженные ионы образует ион водорода с органическими веществами, содержащими кислород:

    R2O + Н+ = [ R2O -> Н ]+.

    Металл экстрагируется в виде комплексного аниона, например H[FeCU] + R2O = [R2O -> Н] [FeCU].


    218





    Нейтральные экстрагенты могут экстрагировать и катионы металлов в случае непосредственного присоединения полярной группы молекулы экстрагента к катиону (сольватный тип взаимодействия), например, экстракция трибутилфталатом (ТБФ):

    Ме2+
    + 2N0'3 + 2ТБФ <-> 2 ТБФ • Me(NCb)2.

    Рекомендуется для извлечения из сточных вод металлов применять следующие экстрагенты:

    ТБФ - для извлечения Au, Cd, Hg, Fe, металлов платиновой группы, Са, Sr, V, In, Ga, Se, Те;

    алкилфосфорные кислоты - Си, Cs, Mg, Со, Ni, V, Mo, As, Sb; жирные и нафтеновые кислоты - Си, Ag, Zn, Cd, Hg, Mg, Al, Pb, Bi, Fe, Ni, Ga;

    пиридиноксиды, оксиды аминов - Ag, Zn, Mo, W, Fe, Co, Ni; хлорекс - Au, Zn, Ga, Ti, Ge, Pd;

    амины - Au, Zn, Cd, Be, V, Mo, Se, Mn, Fe, Co, Ni, металлов платиновой группы, Re.

    Экстракция может быть экономически выгодным процессом, если стоимость извлекаемых веществ компенсирует все затраты на его проведение. Для каждого вещества существует концентрационный предел рентабельности извлечения его из сточных вод. В общем случае можно считать, что большинство веществ при концентрации выше 3-4 г/л рациональнее извлекать экстракцией, чем адсорбцией. При концентрации меньше 1 г/л экстракцию следует применять только в особых случаях.

    Для очистки сточных вод наиболее часто применяют процессы противоточной многоступенчатой экстракции и непрерывной противоточной экстракции.

    Схема многоступенчатой экстракционной установки представляет собой батарею смесителей и отстойников: каждая ступень состоит из смесителя воды с экстрагентом и отстойника. Свежий экстрагент и сточная вода поступают с противоположных сторон.

    Схема непрерывной экстракции в противоточной установке с регенерацией экстрагента показана на рис. 4.14.

    Экстракция производится в аппаратах различной конструкции: распылительных, насадочных, тарельчатых колонках, а также в центробежных экстракторах (на рис.4.14 пертрактор - совмещенные центробежные экстрактор и реэкстрактор).


    219





    Рис. 4.14. Принципиальная схема жидкостной экстракции:

    1-сборник промывной воды, 2-насос, 3-пертрактор, 4-накопнтель концентрата кислого раствора, 5-механические мешалки.

    1. 1   ...   30   31   32   33   34   35   36   37   ...   44


    написать администратору сайта