Главная страница
Навигация по странице:

  • Свойства лекарственных веществ группы пурина

  • Испытание на подлинность и чистоту.

  • Мурексидная

  • (12%-ные

  • Машины для измельчения твердых тел

  • Траво

  • Ударно-центробежные мельницы.

  • Билет 1. Вопрос Ингалипт


    Скачать 11.63 Mb.
    НазваниеБилет 1. Вопрос Ингалипт
    АнкорBilety_GAK_otvety.doc
    Дата24.04.2017
    Размер11.63 Mb.
    Формат файлаdoc
    Имя файлаBilety_GAK_otvety.doc
    ТипДокументы
    #4432
    страница11 из 60
    1   ...   7   8   9   10   11   12   13   14   ...   60

    Пахикарпина Таблетки ОД г; 3%-й 1,2 г

    гидроиодид раствор для инъекций

    Морфина Раствор для инъекций: 20 ампул

    гидрохлорид ампулы 10 мг в 1 мл

    Омнопон Раствор для инъекций: 10 ампул 5 ампул

    1%-й, ампулы по 1 мл

    2%-й, ампулы по 1 мл

    Промедол Таблетки для приема 50 таблеток

    (трймеперидина внутрь по 25 мг Раствор 10 ампул 10 гидрохлорид) для инъекций: 1-—2%-й, шприц-тюбиков

    ампулы по 1 мл 1—2%-й,

    шприц-тюбики по 1 мл

    Эфедрина Таблетки для детей по 2, 0,6 г

    гидрохлорид 3 и 10 мг, 10 шт. в

    упаковке таблетки по 25

    мг Раствор для инъекций

    5%-й, ампулы по 1мл

    Капли назальные 2%-й Производные раствор, 10 мл во барбитуровой флаконе

    кислоты. 10—12 таблеток

    например Таблетки по 50 и 100 мг,

    фенобарбитал 6 шт.; таблетки для детей

    по 5 мг, б шт.
    Билет № 7.

    Вопрос 1. Свойства лекарственных веществ группы пурина

    К производным пурина относится большая группа лекарственных веществ, обладающих различной фармакологической активностью — бронхолитической, диуретической, кардиотонической, противоопухолевой, действием на ЦНС.

    В основе химической структуры указанных лекарств лежит бициклическая система пурина, существующая в виде 2 изомеров:



    J1L. - производные пурина по химическому строению разделяются на следующие группы: производные ксаитина; нуклеозиды и нуклеотиды пурина (рибоксин, ЛТФ. динатриевая соль, адснозинтрифосфорной кислоты); синтетические производные пурина и близкие по строению.

    Производные ксантина (7 Н - пурина)

    Эуфиллин - Euplnllinum.



    Соль теофиллина с этилендиамином. Белый или белый с желтоватым оттенком кристаллический порошок со слабым аммиачным запахом. На воздухе поглощает углекислоту, при этом растворимость уменьшается.

    Лекарственные формы: порошок, таблетки, раствор для инъекций.

    5.1. Физические свойства

    Эуфиллин обладает с характерными Тпл и спектрами поглощения в УФ- и И К-областях.

    Аминофиллин имеет аммиачный запах, обусловленный наличием этилендиамина. на воздухе он поглощает углекислый газ. Растворимость его при этом уменьшается. Аминофиллин — растворим в воде, водные растворы имеют щелочную реакцию, очень мало растворимы в этаноле.

    Кислотно-основные свойства

    Пурин — ароматическая система с сильной делокализацией п-электронов. которые играют большую роль в образовании различных молекулярных комплексов. Он обладает электронодонорными свойствами и представляет собой растворимое в воде слабое основание (рКа= 2,4), образующее с кислотами непрочные соли. В то же время благодаря наличию подвижного атома водорода в NH-группе пурин проявляет слабые кислотные свойства (рКа = 8.9) и образует соли с металлами.

    Лекарственные вещества группы пурина — слабые основания, образующие с кислотами неустойчивые соли при протонировании гетероатома азота в 9-м положении.

    Как правило, производные ксантина с трудом растворяются в воде (лучше — в горячей). Для получения хорошо растворимых лекарственных препаратов используется их способность к комплексообразованию.

    В теофиллине имеется одна свободная, по мало активная NH-группа, способная образовывать слабые межмолекулярные водородные мостики. Как в твердом состоянии, так и в растворе предполагается полимеризация. Это подтверждается меньшей, чем у кофеина, растворимостью и более высокой Тпл.

    При получении периодида, теофиллин образует в этих условиях темно-коричневый осадок.



    Теофиллин является амфотерным соединениям. Его основные свойства обусловлены наличием неподеленной пары электронов атома азота в 9-м положении. Кислотные свойства теофиллина (рКа= 8,8) —- с подвижностью атома водорода при гетероатоме азота в 7-м положении. Кислотные свойства у теофиллина выражены сильнее, чем у теобромина.

    Обладая более выраженными, чем у теобромина, кислотными свойствами, теофиллин растворяется не только в щелочах, но и в растворе аммиака:



    ,, Лактамная форма Мезомерно стабилизированный анион (лактимная форма)

    Испытание на подлинность и чистоту.

    Для испытания на подлинность производных ксантина используют реакции окисления, осаждения, комплексообразования.

    За счет кислотных свойств теофиллин образует растворимые соли не только со щелочами, но и с органическими основаниями. С солями тяжелых металлов (Ag+, Co2+, Cu2+) получаются нерастворимые соединения.

    Теофиллин образует белый с розоватым оттенком осадок: ,



    Подлинность теофиллина можно также установить по образованию из растворов их натриевых солей характерных осадков солей серебра. Серебряная соль теофиллина представляет полупрозрачный студенистый осадок, разжижающийся при нагревании и вновь застывающий при охлаждении:



    Мурексидная проба (общегрупповая реакция)

    Реакция основана на окислительно-гидролитическом разложении веществ группы ксантина до производных пиримидина, в которых 1 или 2 аминогруппы конденсируются друг с другом до образования пурпурной кислоты, имеющей в виде аммонийной соли красно-фиолетовое окрашивание. Для проведения реакции препарат нагревают на водяной бане до полного упаривания с окислителем (Н^СЬ, Br2. HNO3) в кислой среде. Затем добавляют раствор аммиака; появляется пурпурно-красное окрашивание.

    Химизм (на примере мочевой кислоты): '

    Мурексид (аммонийная соль пурпуровой кислоты;

    В присутствии щелочи разлагается теофиллин до теофиллидина, который далее может быть идентифицирован по реакции азосочетания с солью диазония с образованием азокрасителя:





    Другие реакции.высушенный теофиллин должен иметь температуру плавления 269-274°С. Из фильтрата с помощью бензоилхлорида в щелочной среде осаждают дибензоилэтилендиамин:



    Осадок отфильтровывают, промывают водой, перекристаллизовывают из этанола, промывают, сушат. Его температура плавления должна быть 250-251°С.

    Испытания на чистоту производных ксантина и их двойных солей выполняют, устанавливая допустимые пределы примесей посторонних алкалоидов.

    Основным методом, применяемым для обнаружения посторонних примесей, в т.ч. иных пуриновых алкалоидов в производных ксантина является ТСХ. Испытания выполняют на пластинках Силуфол УФ-254 или пластинках, покрытых слоем силикагеля F254-Хроматографируют восходящим методом в системах растворителей различного состава. Детектируют, как правило, в УФ-свете при длине волны 254 нм и оценивают содержание примесей по величине и интенсивности пятен на хроматограммах, сравнивая их со свидетелями. Суммарное содержание примесей в в аминофиллине — не более 0,5%.

    Эуфиллин реагирует с раствором сульфата меди с образованием комплексного соединения красно-фиолетового цвета (реакция на остаток этилендиамина):



    Методы количественного определения

    Количественное определение. Для количественного определения производных ксантина и их двойных солей используют особенности кислотно-основных свойств.

    Эуфиллин за счет остатка этилендиамина определяют титрованием стандартным раствором хлороводородной кислоты.



    Количественное определение теофиллина в аминофиллине выполняют после нагревания (для удаления этилендиамина) в течение 2,5 ч при 125-130°С, используя метод косвенной нейтрализации. Этилендиамин в отдельной навеске титруют 0,1 М раствором хлороводородной кислоты в присутствии индикатора метилового оранжевого: При взаимодействии теофиллина с раствором нитрата серебра образуется эквивалентное препаратам количество азотной кислоты, которую титруют стандартным раствором гидроксида натрия:

    Аминофиллин должен содержать 80-85% теофиллина и 14-18% этилендиамина.

    Теофиллин в аминофиллине можно определить аргентометрическим методом с использованием в качестве индикатора амидопирина. Освобождающаяся при титровании азотная кислота нейтрализуется этилендиамином и не мешает титрованию. В эквивалентной точке раствор приобретает синеватое окрашивание.



    Предложен экспресс-метод определения теофиллина в аминофиллине в смеси растворителей диметилформамид — вода с помощью титранта — 0,1 М водного раствора гидроксида натрия (индикатор тимоловый синий). В этой среде кислотные свойства теофиллина усиливаются настолько, что становится возможным его титрование как кислоты. Содержание воды в точке эквивалентности достигает 20-25% и не оказывает влияния на результаты титрования.Хранение и применение препаратов, производных пурина.

    Эуфиллин хранят по списку Б, в хорошо укупоренной таре во избежании поглощения углекислоты. Теофиллин предохраняют от действия света, и теофиллин применяют в качестве спазмолитических (сосудорасширяющих, бронхорасширяющих) и диуретических средств. Аминофиллин назначают при тех же показаниях, что и теофиллин. Хорошая растворимость в воде позволяет вводить его не только внутрь (0,1 -0,1 5 г), но и внутримышечно (12%-ные и 24%-ные растворы), а также внутривенно (2,4%-ные растворы).

    Вопрос 2. Измельчение порошков приводит к увеличению биодоступности.

    При изготовлении лекарственных форм из порошкового материала, помимо смешения и прессования, проводятся операции измельчения, грануляции и таблетирования.

    Измельчение препарата используется для достижения однородности смешения, устранения крупных агрегатов в комкующихся и склеивающихся материалах, увеличения технологических и биологических эффектов.

    Измельчение порошков приводит к определенному увеличению прочности и числа контактов между частицами и в результате ■— к образованию прочных конгломератов. Тонкое измельчение лекарственных порошков, несмотря на возможные преимущества биодоступности, не нашло широкого применения, за исключением отдельных случаев, в технологии производства твердых лекарственных форм. Это обусловлено тем. что кристалл представляет собой жестко сформированную структуру с минимальной свободной и высокой внутренней энергией и для его разрушения требуются значительные внешние усилия. В системе кристаллов одновременно с измельчением усиливается трение, уменьшающее прилагаемую внешнюю нагрузку до величин, способных вызвать только эластическую или незначительную пластическую деформацию. Поэтому эффективность измельчения, особенно в кристаллических веществах с высокой температурой плавления, быстро падает.

    Машины для измельчения твердых тел

    Измельчающие машины могут быть классифицированы по различным признакам: степени измельчения материала, которую можно достичь с помощью машин (для среднего и мелкого измельчения) и мельниц (для тонкого и коллоидного измельчения); способу измельчения — машины изрезывающие, истирающие, раздавливающие, ударные, ударно-истирающие и др. В дальнейшем изложении будем придерживаться обеих классификаций, дополняющих друг друга.

    Машины для среднего и мелкого измельчения

    Изрезывающие машины. Применяются для измельчения высушенного растительного лекарственного сырья, которое изрезывается до размера частиц 2—8 мм (для получения сборов или производства экстракционных препаратов) с помощью траво- и корнерезок. Рабочим инструментом изрезывающих машин является нож или система ножей, совершающих возвратно-поступательное или вращательное движение. В некоторых случаях машина имеет две системы ножей. Один нож в этих системах двигается, другие смонтированы неподвижно.

    Рис. Траворезка.

    а — дисковая; б — барабанная; I — ножевой барабан, 2 — шкив; 3 — маховик.

    Траво- и корнерезки. В зависимости от строения ножей различают траворезки дисковые и барабанные. В дисковых траворезках ножи имеют изогнутое лезвие и насажены на спицы рабочего колеса, в барабанных ножи помешаются на боковой поверхности барабана, вращающегося вокруг своей оси .

    Для измельчения плотных частей растений (корни, корневища, коры) применяются корнерезки. Отличительной их особенностью является наличие гильотинных ножей. Растительное сырье подается с помощью транспортера (2), представляющего собой брезентовую ленту или металлическую сетку, натянутую на два валика, из которых один совершает вращательное движение, обеспечивающее перемещение ленты. Транспортер помещается в глубоком лотке (1) для создания направления движения материала. Прессующие и направляющие валики с рифленой поверхностью (3), которых бывает две или три пары, вращающиеся навстречу друг другу, создают компактный слой материала и продвигают его на определенную длину. Электродвигатель (на рис. не указан) приводит во вращение маховик (5) кривошипного вала (4). Кривошипом приводится в движение гильотинный нож (6), совершающий возвратно-поступательное движение; растительное сырье подается между нижним неподвижным (7) и верхним (6) падающим ножом, разрезается на куски определенной регулируемой величины.

    Раздавливающие машины. Валковая дробилка состоит из двух параллельных цилиндрических валков, которые, вращаясь навстречу друг другу, измельчают материал главным образом путем раздавливания. Валки размещены на подшипниках в корпусе, причем валок (1) вращается в неподвижно установленных, а валок (2) — в скользящих подшипниках, которые удерживаются в заданном положении (в зависимости от требуемой ширины зазора) с помощью пружины (3). При попадании в дробилку куска материала чрезмерной твердости пружины ее сжимаются, подвижный валок отходит от неподвижного и кусок выпадает из дробилки, при этом устраняется возможность ее поломки.В промышленности используются валковые дробилки, отличающиеся по числу, форме и скорости вращения валков. Приводной механизм состоит из двухпеременных передач от отдельного двигателя на шкив каждого валка, окружная скорость которых составляет 2—4,5 м/с. Наибольший размер кусков измельчаемого в валковой дробилке материала зависит от диаметра валков и зазора между ними. Для того чтобы куски измельчаемого материала вследствие трения втягивались между гладкими валками, их диаметр должен быть приблизительно в 20 раз больше диаметра максимального куска измельчаемого материала. Поэтому гладкие валки применяются только для среднего и мелкого измельчения.

    Для хрупких материалов (соли и др.) применяют зубчатые валковые дробилки, которые измельчают их раскалыванием и частично раздавливанием и могут захватывать куски размером диаметра валка. Валковые дробилки компактны и надежны в работе. Вследствие однократного сжатия материал не переизмельчается. Они наиболее эффективны для ма­териалов умеренной твердости.



    Рис.. Устройство корнерезки с гильотинными ножами.



    Ударно-центробежные мельницы. Дысмембратор и дезинтегратор. Рабочими частями дисмембратора являются диски: вращающийся — со скоростью до 3000 об/мин (1) и неподвижный (3). Роль последнего выполняет внутренняя стенка корпуса. На внутренней поверхности дисков укреплены по концентрическим окружностям пальцы. При этом диски поставлены один против другого так, что пальцы (2) вращающегося диска входят в свободное пространство между пальцами (4) неподвижного диска. Число пальцев в концентрических окружностях увеличивается по направлению от центра к периферии. Материал, подлежащий измельчению, через загрузочный бункер (5) поступает в центр дисмембратора, в зону между вращающимися и неподвижными пальцами, где и происходит его измельчение. Под действиемцентробежной силы частицы перемещаются от центра к периферии рабочего органа дисмембратора, многократно ударяются о пальцы, поверхность дисков, испытывают взаимные удары и разрушаются. Измельченные частицы отбрасываются в улитку (6), откуда, ударяясь о корпус дисмембратора (7) и вращающийся диск, падают вниз и выводятся из машины. Для предотвращения попадания в зоны измельчения механических предметов исходное сырье проходит предварительно через магнитный сепаратор (8), который устанавливается в нижней части бункера.

    Рис 1. Устройство дисмембратора.



    Дезинтегратор конструктивно отличается от дисмембратора тем. что его рабочие части состоят из двух входящих друг в друга, вращающихся со скоростью до 1200 об/мин в противоположном направлении дисков (1) и (2) с пальцами (9). Каждый диск (ротор) закреплен на отдельных валах (3) и (7), которые приводятся во вращение от индивидуальных электродвигателей через шкивы (4) и (6). Материал подается в машину сбоку через воронку (8)>

    вдоль оси дисков, отбрасывается к периферии, подхватывается пальцами и, подвергаясь многочисленный ударам, измельчается и удаляется через разгрузочную воронку (5) в нижней части корпуса.

    Машины для тонкого измельчения
    1   ...   7   8   9   10   11   12   13   14   ...   60


    написать администратору сайта