Главная страница
Навигация по странице:

  • 222222Частичная вторичная адентия. Изменения в зубочелюстной системе при вторичной частичной адентии. Классификации дефектов зубных рядов.

  • Патогенетические основы частичной вторичной адентии

  • Классификация дефектов зубных рядов Е.И. Гаврилова

  • Классификация дефектов зубных рядов Кеннеди

  • 33333333Конструкционные материалы: металлические сплавы. Основные требования к стоматологическим сплавам. Сплавы благородных и неблагородных металлов: состав, свойства, клиническая оценка.

  • Нержавеющая

  • Сплавы

  • Сплавы благородных металлов ( золото , золото - платина , серебро - палладий ). Их состав

  • Билеты которые есть!!!! 2,3,4,5,6,7,9,10,11,13,14,15,16(1),16,17,18,20,21,24,25,27,28,29,30,31


    Скачать 2.43 Mb.
    НазваниеБилеты которые есть!!!! 2,3,4,5,6,7,9,10,11,13,14,15,16(1),16,17,18,20,21,24,25,27,28,29,30,31
    Анкорbilety.docx
    Дата18.01.2018
    Размер2.43 Mb.
    Формат файлаdocx
    Имя файлаbilety.docx
    ТипДокументы
    #14504
    страница14 из 18
    1   ...   10   11   12   13   14   15   16   17   18

    Методы обтурации корневых каналов гуттаперчей.

    Обтурация холодными гуттаперчивыми штифтами:

    Методика одного штифта заключается в обтурации корневого канала, в который введен гуттаперчивый штифт с силлером, поскольку один штифт не обеспечивает полной обтурации корневого канала. Показанием к применению метода являются узкие, искривленные. Щтифт должен соответствовать размеру последнего файла, обрабатывавшего канал на всю рабочую длину. Перед введением штифта его обрабатывают силлером, который вводят в канал каналонаполнителем или файлом.

    Латеральная конденсация холодных гуттаперчивых штифтов с герметиком считается самым надежным методом пломбирования. Производят это следующим образом: подбирают основной гуттаперчивый штифт, который соответствует размеру последнего инструмента, применяемого для обработки канала. В корневой канал вводят эндогерметик (силлер), файлом или каналонаполнителем распределяют его по стенкам канала и вводят основной штифт, смазанный пастой или герметиком до физиологического отверстия. Боковым уплотнителем (спредером), введеным до упора, основной штифт прижимают к любой из стенок канала. В образовавшийся промежуток между стенкой канала и штифтом вводят дополнительный гуттаперчивый штифт, который конденсируют уплотнителем и прижимают к основному штифту. Образовавшийся промежуток замещают новым штифтом, который погружают на меньшую глубину. Боковое уплотнение продолжается до тех пор, пока уплотнитель не перестает проникать в канал. После этого убирают избыток гуттаперчивых штифтов разогретым инструментом и производят рентгеновский контроль.

    Обтурация химически пластифицированной холодной гуттаперчей является одним из вариантов метода латеральной конденсации. Принцип метода основан на использовании в качестве растворителя хлороформа или его заменителей. При данном методе основной гуттаперчивый штифт после его припасовки извлекают из канала, его кончик погружают в растворитель на 1с, покрывают герметиком и штифт снова погружают в канал. Размягченный кончик гуттаперчивого штифта легко поддается обработки при конденсации, благодаря чему создается плотно прилегающая к стенкам канала в апикальной части пломба, способная заполнить боковые ответвления.

    Вертикальная конденсация гуттаперчи. При пломбировании каналов методом вертикальной конденсации необходим набор штопферов, для разогрева гуттаперчи в канале используют инструменты типа зонда, которые в разогретом виде вводят в канал. Первым этапом является припасовка основного штифта. Затем штифт извлекают, погружают в герметик, вводят до упора в канал и прижимают разогретым инструментом. После извлечения инструмента производят уплотнение гуттаперчи. При постепенном разогреве и уплотнении гуттаперча хорошо обтурирует верхушечную часть канала и заполняет дополнительные отверстия.

    Обтурация теплой фрагментированной гуттаперчей заключается в использовании маленьких разогретых кусочков гуттаперчи. Данная методика может выполняться также с использованием размягченной в хлороформе или галотане гутаперчи.

    Латерально-вертикальная конденсация разогретой гуттаперчи предполагает использование температурного конденсора в форме ручного наконечника с батареей, нагревающей плаггерную часть (Endotec).

    Термомеханическая конденсация осуществляется с использованием специального инструмента-уплотнителя или гутта-конденсора. Метод основан на размягчении гуттаперчи в канале под воздействием тепла, образующегося при вращении инструмента со скоростью 8000-10000 об/мин.

    Обтурация термопластической инъекцией гуттаперчи заключается во введении в канал разогретой гуттаперчи из шприца, нагретого до 160 гр. (температура состояния текучести материала сквозь иглу). Игла шприца должна на 3,5-5мм не достигать апикального отверстия. Используется силлер для заполнения пространства между гуттаперчей и стенкой канала. После введения первой порции гуттаперчу в апикальной части быстро уплотняют заранее подобранным ручным плаггером, на 3,5-5мм не доходящим до апикального отверстия.

    Обтурация корневого канала двухфазной гуттаперчей проводят с применением конденсора, конструкция которого напоминает гутта-конденсер и обеспечивает давление не апикально, а на стенки, что предотвращает перепломбировку канала. Используют две фазы разогретой гуттаперчи, подготовленные путем обработки первичного сырья различными способами: вначале при помощи специального разогревающего аппарата и шприца на инструмент наносят более плотную фазу, поверх неё-более жидкую. Конденсор вводят в канал. При вращении (3000-5000 об/мин) он уплотняет гуттаперчу и благодаря своей конструкции и сопротивлению гуттаперчи сам выводится из канала. В результате пломбирования макроканал оказывается заполненным плотной гуттаперчей, а латеральные каналы и пристеночные участки - более текучей. Что позволяет достичь оптимальной обтурации.

    Обтурация корневых каналов системой «Термафил».

    В настоящее время разработана технология обтурации корневых каналов системой «Термафил», которая представляет собой конусообразный гибкий стержень-носитель, изготовленный из нержавеющей стали, титана или ренгеноконтрастной пластмассы и сверху покрыт слоем гуттаперчи в состоянии альфа-фазы.

    Гуттаперча альфа-фазы обладает низкой температурой нагрева, высокой текучестью и прилипаемостью. Высокая текучесть гуттаперчи обеспечивает хорошее проникновение её в микроканальцы корня. Одним из недостатков обтурации канала термопластической гуттаперчей является её усадка в канале после охлаждения. В результате образуются микропространства между наполнителем и стенками канала..

    Клинические этапы обтурации корневого канала термофилом сводятся к следующему:

    Вначале подбирают термафил согласно размера диаметра, подготовленного к пломбированию канала. Для этого обычно используют пластиковый верификатор, имеющийся в наборе. Его вводят в канал с небольшим усилием и с помощью силиконового ограничителя отмечают рабочую длину. После этого подбирают термафил, соответствующий размеру верификатора, и на нем отмеряют рабочую длину канала. При пломбировании зубов с искривленными каналами металлический стержень термафила предварительно изгибают по форме кривизны канала. Пластиковые стержни изгибать не нужно, так как они более эластичны при нагревании и хорошо повторяют форму канала.

    Подобранный по размеру канала термафил, подвергается антисептической обработке путем помещения его на 1-2 мин в 5,25% раствор гипохлорида натрия с последующим промыванием в 70% спирте и высушиванием.

    Обработанный таким образом термафил помещают в печку «Термапреп» на 20-30сек. Во время подогрева термафила врач вводит в канал небольшое количество герметика (силлера) при помощи каналонаполнителя или бумажных штифтов. Фирма-изготовитель термафилов Tulsa Dental Products в качестве силлера рекомендует использовать специальный герметик Thermaseal. Фирма Dentsply предложила новый силлер Topseal. Кроме выше указанных силлеров, на наш взгляд, можно использовать любые силлеры на основе эпоксидных смол.

    Предварительно нагретый в печке термафил без особых усилий и вращательных движений вводят в корневой канал до апикального упора. Металлический штифт термафила можно использовать в качестве опоры для изготовления штифтового зуба. В случае восстановления коронковой части зуба композиционным пломбировочным материалом ручку термафила изгибают и с помощью вращающегося бора отрезают. После этого проводят конденсацию и удаление избытков гуттаперчи в полости зуба, а затем приступают к восстановлению разрушенной части коронки. Реставрацию зуба можно провести также во время следующего посещения.

    222222Частичная вторичная адентия. Изменения в зубочелюстной системе при вторичной частичной адентии. Классификации дефектов зубных рядов.

    Адентия - отсутствие нескольких или всех зубов.   Различают приобретенную (в результате заболевания или травмы), врожденную наследственную адентию.

    Наиболее распространенными причинами вторичной частичной адентии являются кариес и его осложнения - пульпит и периодонтит, а также заболевания пародонта - пародонтиты.

    Патогенетические основы частичной вторичной адентии как самостоятельной формы поражения зубочелюстной системы обусловлены большими адаптационными и компенсаторными механизмами зубочелюстной системы. Начало болезни связано с удалением зуба и образованием дефекта в зубном ряду и как следствием последнего - изменением функции жевания. Единая в морфофункциональном отношении зубочелюстная система распадает. ся при наличии нефункционирующих зубов (эти зубы лишены антагонистов) и возрастнбов, функциональная деятельность которых повышена. Субъективно человек, потерявший один, два и даже три зуба, может не замечать нарушения функции жевания. Однако, несмотря на отсутствие субъективных симптомов поражения зубочелюстной системы, в ней происходят существенные изменения.

    Увеличивающаяся со временем количественная потеря зубов ведет к изменению функции жевания. Эти изменения зависят от топографии дефектов и количественной потери зубов: на участках зубного ряда, где нет антагонистов, человек разжевывать или откусывать пищу не может, эти функции выполняют сохраненные группы антагонистов. Перенос функции откусывания на группу клыков или премоляров вследствие потери передних зубов, а при потере жевательных - функции разжевывания на группу премоляров или даже переднюю группу зубов нарушает функции тканей пародонта, мышечной системы, элементов височнонижнечелюстных  суставов.

    Классификация вторичной частичной адентии по Е.И. Гаврилову
    1 класс-  односторонний концевой дефект,
    2 класс - двусторонние концевые дефекты,
    3 класс - односторонний включенный дефект бокового отдела зубного ряда,
    4 класс - двусторонние включенные дефекты боковых отделов зубного ряда,
    5 класс - включенный дефект переднего отдела зубного ряда,
    6 класс - комбинированные дефекты,
    7 класс - челюсть с одиночно сохранившимся зубом.

    Классификация дефектов зубных рядов Е.И. Гаврилова (1966)
    В ней выделяется четыре группы 
    дефектов: 
    1. Концевые односторонние и двусторонние. 
    2. Включенные (боковые односторонние, двусторонние и передние). 
    3. Комбинированные. 
    4. Челюсти с одиночно сохранившимися зубами.

    Классификация дефектов зубных рядов Кеннеди (1923)
    1 класс - потеря жевательных зубов с обеих сторон. Основная конструкция 
    протеза - лабильное крепление. От основного бюгеля отходят ответвления 
    для укрепления на них искусственных зубов, восстанавливающих зубной 
    ряд. 
    2 класс - односторонний дефект зубного ряда при потере дистальной 
    опоры. Основная конструкция протеза - палатинальная фиксация протеза со 
    стороны челюсти с сохранившимися зубами и лабильное крепление протеза 
    на стороне дефекта зубного ряда. 
    3 класс - односторонний дефект при 
    наличии дистальной опоры. Основная конструкция протеза - съемный 
    мостовидный протез на опорных кламмерах. 
    4 класс - дефекты во 
    фронтальном участке зубного ряда. Конструкция протеза - съемный 
    мостовидный протез с опорными кламмерами.

    33333333Конструкционные материалы: металлические сплавы. Основные требования к стоматологическим сплавам. Сплавы благородных и неблагородных металлов: состав, свойства, клиническая оценка.

    Чистые металлы в ортопедической стоматологии не применяются, т. к. для зуботехнических целей необходимы сплавы, обладающие разнообразными свойствами.

    Сплавы, применяемые в ортопедической стоматологии, должны иметь определенные свойства, которые можно разделить па две группы.

    К первой относятся общемедицинские свойства. Сплавы не должны вызывать в полости рта пациента токсического и аллергического действия.

    Ко второй относятся технологические свойства.

    1. Высокая антикоррозийная стойкость.

    2. Ковкость, текучесть при литье.

    3. Прочность, твердость.

    4. Малая усадка при литье, невысокая температура плавления.

    5. Хорошая механическая и электролитическая обработка и полировка.

    6. Возможность паяния.

    Все эти требования зависят от количества компонентов (металлов), входящих в сплав. Каждый из них привносит свое качество. Так, например, хром (17—19%) придает сплаву коррозийную стойкость, никель (8—10%) — пластичность, усиливает вязкость, делает его ковким.

    Для улучшения литейных свойств добавляют титан (около 1%), кобальт придает стали высокие механические свойства, молибден — мелкокристаллическую структуру, что так же усиливает прочность. Марганец понижает температуру плавления, способствует удалению газов и сернистых соединений. Нержавеющаясталь

    Наиболее распространенной для изготовления штампованных коронок и паяных мостовидных протезов является нержавеющая сталь марки IX 18Н9Т: (72% железа, 18% хрома, 9% никеля, 0,1% углерода и 1% титана). Хром обеспечивает коррозионную устойчивость, никель придает сплаву пластичность, делает его ковким, облегчает обработку давлением. При термической обработке сплава при температуре 450-850°С могут образоваться химические соединения хрома с углеродом - карбиды хрома, молекулы которых размещаются по границам кристаллических зерен. Это приводит к уменьшению количества свободного хрома в этих зонах, в связи с чем увеличивается возможность возникновения межкристаллической коррозии.

    Для предупреждения образования карбидов хрома в состав стали вводят титан, вступающий в связь с углеродом. При этом образуются карбиды титана, а образование карбидов хрома прекращается, что предотвращает межкристаллическую коррозию стали.

    Для улучшения жидкотекучести и жаростойкости стали вводится 2,5% кремния (сплав ЭИ-95).

    Механические свойства нержавеющих сталей резко меняются после холодной деформации и наклепа, в результате чего образуются карбиды металлов, в основном хрома.

    Для восстановления свойств стали ее необходимо нагреть до 1100° и охладить (отпустить). Эта процедура восстановит пластичность сплава, повысит его антикоррозийные свойства. Кобальтохромоникелевый сплав (КХС)

    Кобальтохромоникелевый сплав применяется для литья конструкций высокой точности (каркасы литых мостовидных протезов, дуговых протезов и литых базисов для съемных протезов). Этот сплав имеет небольшую усадку и обладает хорошими механическими свойствами.

    Сплав КХС (Кобальтохромоникелевый сплав) с температурой плавления 1460°С содержит: кобальта 67%, хрома 26%, никеля 6%, молибдена и марганца по 0,5%. Кобальт имеет высокие механические свойства, хром вводится для придания твердости и антикоррозийных свойств, молибден усиливает прочностные свойства, никель повышает вязкость сплава, марганец улучшает жидкотекучесть, понижает температуру плавления. Примесь железа допускается не более 0,5%, она увеличивает усадку при литье и ухудшает физико-химические свойства сплава.

    Сплавытитана

    Титан плавится при температуре 1690 "С, имеет плотность 4,5 г/см:\ В настоящее время получен титан ВТ 1-0 и ВТ 1-00 (соответственно 99,55 и 99,48% чистоты). Примерно 0,5% составляют примеси железа, азота, водорода, которые ухудшают свойства титана. Усадка титановых сплавов при литье составляет 2-3%. Сплавы титана имеют биологическую инертность за счет защитной пленки из оксида титана, высокую удельную прочность, хорошую химическую стойкость ко многим агрессивным средам.

    Сплавы титана применяются для изготовления имплантатов; для изготовления зубных протезов (Пермь, Г.И.Рогожников)

    На базе новых металлургических технологий разработаны сплавы нике-лида титана (нитинола), имеющие хорошую коррозионную стойкость, пластичность, свойство "памяти". Проволока из нитинола применяется в орто-донтии. Сплавы благородных металлов (золото, золото-платина,

    серебро-палладий). Их состав, свойства, показания к

    применению. Пробирные системы (метрическая,

    золотниковая, каратная)

    Сплавы золота различают по процентному содержанию золота. Чистое золото обозначают 1000-ой пробой. Помимо метрической пробы в России существовала до 1927 г. золотниковая. В основу ее положена весовая единица „фунт", состоящая из 96 золотников, химически чистое золото обозначалось 96 пробой. Одна золотниковая проба равна 1000 : 96 = 10,4 метрической пробы. Следовательно, для перевода золотниковой пробы в метрическую необходимо умножить показатель золотниковой пробы на коэффициент 10,4. Помимо русской и метрической системы существует каратная система. Карат является единицей веса - равен 0,12 г. По каратной системе исчисляется ценность алмазов и других камней. Чистое золото равно 24 единиц-карат. Для перевода каратной системы в метрическую следует показатель каратной системы умножить на 41, 66.

    Сплав золота 900-й пробы содержит 90% золота, 4% серебра, 6% меди, хорошо поддается штамповке, имеет невысокую твердость и легко поддается стиранию. Применяется он для изготовления штампованных коронок и паяных мостовидных протезов.

    Сплав золота 750-й пробы содержит 75% золота, 8% серебра, 7,8% меди, 9% платины. Платина и медь делают сплав более твердым, упругим. Сплав имеет небольшую усадку при литье и применяется для изготовления каркасов дуговых и шинирующих протезов, кламмеров, штифтов, вкладок, крам-поиов и проволоки.
    1   ...   10   11   12   13   14   15   16   17   18


    написать администратору сайта