Ответы на вопросы по химии. Д. И. Менделеева. Структура периодической системы
Скачать 0.81 Mb.
|
Перокси́д водоро́да (перекись водорода), H2O2 — простейший представитель пероксидов. Бесцветная жидкость с «металлическим» вкусом, неограниченно растворимая в воде, спирте и эфире. Концентрированные водные растворы взрывоопасны. Пероксид водорода является хорошим растворителем. Из воды выделяется в виде неустойчивого кристаллогидрата H2O2•2H2 Вследствие несимметричности молекула H2O2 сильно полярна. Относительно высокая вязкость жидкого пероксида водорода обусловлена развитой системой водородных связей. Поскольку атомы кислорода имеют неподелённые электронные пары, молекула H2O2 также способна образовывать донорно-акцепторные связи. Химические свойства Оба атома кислорода находятся в промежуточной степени окисления −1, что и обусловливает способность пероксидов выступать как в роли окислителей, так и восстановителей. Наиболее характерны для них окислительные свойства. Молекула пероксида водорода сильно полярна, что приводит к возникновению водородных связей между молекулами. Связь O—O непрочна, поэтому H2O2 — неустойчивое соединение, легко разлагается. Пероксидная группа [—O—O—] входит в состав многих веществ. Такие вещества называют пероксидами, или пероксидными соединениями. К ним относятся пероксиды металлов (Na2O2, BaO2 и др.). Кислоты, содержащие пероксидную группу, называют пероксокислотами, например, пероксомонофосфорная H3PO5 и пероксодисернаяH2S2O8 кислоты. Окислительное-восстановительные свойства Пероксид водорода обладает окислительными, а также восстановительными свойствами. Он окисляет нитриты в нитраты, выделяет иод из иодидов металлов, расщепляет ненасыщенные соединения по месту двойных связей. Пероксид водорода восстанавливает соли золота и серебра, а также марганец при реакции с водным раствором перманганата калия в кислой среде. Биологические свойства Пероксид водорода относится к реактивным формам кислорода и при повышенном образовании в клетке вызывает оксидативный стресс. Некоторые ферменты, например глюкозоксидаза, образуют в ходе окислительно-восстановительной реакции пероксид водорода, который может играть защитную роль в качестве бактерицидного агента. В клетках млекопитающих нет ферментов, которые бы восстанавливали кислород до перекиси водорода. Однако, несколько ферментных систем (ксантиноксидаза, НАДФ•H-оксидаза, циклооксигеназа и др.) продуцируют супероксид, который спонтанно или под действием супероксиддисмутазы превращается в пероксид водорода. Применение Благодаря своим сильным окислительным свойствам пероксид водорода нашёл широкое применение в быту и в промышленности, где используется, например, как отбеливатель на текстильном производстве и при изготовлении бумаги. Применяется как ракетное топливо, в качестве окислителя или как однокомпонентное (с разложением на катализаторе), в том числе для привода турбонасосных агрегатов.[5] Используется в аналитической химии, в качестве пенообразователя при производстве пористых материалов, в производстве дезинфицирующих и отбеливающих средств. В промышленности пероксид водорода также находит свое применение в качестве катализатора, гидрирующего агента, как эпоксидирующий агент при эпоксидировании олефинов. Хотя разбавленные растворы перекиси водорода применяются для небольших поверхностных ран, исследования показали, что этот метод, обеспечивая антисептический эффект и очищение, также продлевает время заживления. Обладая хорошими очищающими свойствами, пероксид водорода на самом деле не ускоряет заживление ран. Достаточно высокие концентрации, обеспечивающие антисептический эффект, могут также продлевать время заживления из-за повреждения прилегающих к ране клеток. Более того, пероксид водорода может мешать заживлению и способствовать образованию рубцов из-за разрушения новообразующихся клеток кожи. Однако в качестве средства для очистки глубоких ран сложного профиля, гнойных затеков, флегмон и других гнойных ран, санация которых затруднена, пероксид водорода остается предпочтительным препаратом, так как он обладает не только антисептическим эффектом, но и создаёт большое количество пены при взаимодействии с ферментом пероксидазой. Это в свою очередь позволяет размягчить и отделить от тканей некротизированные участки, сгустки крови, гноя, которые будут легко смыты последующим введением в полость раны антисептического раствора. Без предварительной обработки пероксидом водорода антисептический раствор не сможет удалить эти патологические образования, что приведет к значительному увеличению времени заживления раны и ухудшит состояние больного. В пищевой промышленности растворы пероксида водорода применяются для дезинфекции технологических поверхностей оборудования, непосредственно соприкасающихся с продукцией. Кроме того, на предприятиях по производству молочной продукции и соков, растворы перекиси водорода используются для дезинфекции упаковки. Для технических целей пероксид водорода применяют в производстве электронной техники. В быту применяется также для выведения пятен MnO2, образовавшихся при взаимодействии перманганата калия («марганцовки») с предметами. 3%-ный раствор пероксида водорода используется в аквариумистике для оживления задохнувшейся рыбы, а также для очистки аквариумов и борьбы с нежелательной флорой и фауной в аквариуме[12]. Опасность применения Несмотря на то, что пероксид водорода не токсичен, его концентрированные растворы при попадании на кожу, слизистые оболочки и в дыхательные пути вызывают ожоги. В больших концентрациях недостаточно чистый пероксид водорода может быть взрывоопасен. Опасен при приёме внутрь концентрированных растворов. Вызывает выраженные деструктивные изменения, сходные с действиями щелочей. Летальная доза 30%-го раствора пероксида водорода (пергидроля) — 50—100 мл. Вопрос №25 Азот и его основные соединения АЗОТ— химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде — газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N2, обладающих высокой прочностью. Относится к неметаллам. Конфигурация внешнего электронного слоя 2s2 2p3. Соединения азота НИТРАТЫ — соли азотной кислоты HNO3, твердые хорошо растворимые в воде вещества. Традиционное русское название некоторых нитратов щелочных и щелочноземельных металлов и аммония — селитры (аммонийная селитра NH4NO3, калийная селитра КNO3, кальциевая селитра Са(NO3)2 и др. НИТРИДЫ — химические соединения азота с более электроположительными элементами. Нитриды алюминия, бора, кремния, вольфрама, титана (AlN, BN, Si3N4, W2N, TiN) и многие другие — тугоплавкие, химические стойкие кристаллические вещества. Компоненты жаропрочных сплавов используются в полупроводниковых приборах (напр., полупроводниковых лазерах, светоизлучающих диодах), как абразивы. Действием азота или аммиака на металлы при 500-600 °С получают нитридные покрытия (высокотвердые, износо- и коррозионностойкие). АЗОТА ОКСИДЫ: гемиоксид N2O и монооксид NO (бесцветные газы), сесквиоксид N2O3 (синяя жидкость), диоксид NO2 (бурый газ, при обычных условиях смесь NO2 и его димера N2O4), оксид N2O5 (бесцветные кристаллы). N2O и NO — несолеобразующие оксиды, N2O3 с водой дает азотистую кислоту, N2O5 — азотную, NO2 — их смесь. Все оксиды азота физиологически активны. N2O — средство для наркоза («веселящий газ»), NO и NO2 — промежуточные продукты в производстве азотной кислоты, NO2 — окислитель в жидком ракетном топливе, смесевых ВВ, нитрующий агент. Аммиак NH3 Встречается при очистке воды, керосина и некоторых минеральных масел; на сахарных заводах; при дублении кожи; в воздухе помещений, где стоит скот; входит в состав клоачных газов (вместе с сероводородом); содержится в неочищенном ацетилене. Применяется для производства азотной кислоты, нитрата и сульфата аммония, жидких удобрений (аммиакатов), мочевины, соды, в органическом синтезе, при крашении тканей, светокопировании (на диазониевой бумаге), в качестве хладагента в холодильниках, при серебрении зеркал. Физические и химические свойства. Бесцветный газ с удушливым резким запахом и едким вкусом. Т. плавл. -77,75°; т. кип. -33,35°; плоти. 0,771 г/л (0°), 0,59 г/л (25°). Растворим в воде, эфире и других органических растворителях. При обычной температуре устойчив. Весьма реакционноспособен, вступает в реакции присоединения, замещения и окисления. В продажу поступает в виде водных растворов, содержащих 28-29% (объемн.) NH3, 10% раствора NH3 (нашатырный спирт) или сжиженного NH3 в стальных цилиндрах. Нитрит натрия NaNO2 Применяется в производстве органических красителей; в пищевой промышленности; для пассивирования стальных изделий; в резиновой и текстильной промышленности, в гальванотехнике. Получается абсорбцией раствором соды нитрозных газов производства азотной кислоты и очисткой, упариванием и кристаллизацией полученной емки нитрита и нитрата натрия. Физические и химические свойства. Бесцветные или желтоватые кристаллы Токсическое действие. Вызывает расширение сосудов вследствие пареза сосуда - двигательного центра (при больших дозах - и вследствие непосредственного действия на кровеносные сосуды), а также образование в крови метгемоглобина. Нитрит калия KNO2 Применяется в производстве азокрасителей н некоторых органических соединений. Получается восстановлением расплавленного KNО2 свинцом; пропусканием SO2 через нагретую смесь KNO3 и СаО. Физические и химические свойства. Бесцветные или желтоватые кристаллы, расплывающиеся на воздухе. Токсическое действие сходно с действием NaNO2. Нитрат натрия (чилийская селитра) NaNO3 Применяется как удобрение; в пищевой, стекольной, металлообрабатывающей промышленности; для получения взрывчатых веществ, ракетного топлива и пиротехнических смесей. Получается из природных залежей выщелачиванием горячей водой и кристаллизацией; абсорбцией раствором соды окислов азота; обменным разложением кальциевой или аммиачной селитры с сульфатом, хлоридом или карбонатом натрия. Физические и химические свойства. Бесцветные кристаллы. Азот Химические свойства Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием с образованием твердого нитрида лития Li3N (3Li+N= Li3N-3). В соединениях проявляет различные степени окисления (от –3 до +5). С водородом образует аммиак NH3. (3H+N=NH3) Косвенным путем (не из простых веществ) получают гидразин N2H4 и азотистоводородную кислоту HN3. Соли этой кислоты — азиды. Азид свинца Pb(N3)2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов. Известно несколько оксидов азота. С галогенами азот непосредственно не реагирует, косвенными путями получены NF3, NCl3, NBr3 и NI3, а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF3). Галогениды азота неустойчивы и легко разлагаются при нагревании. При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М3N2 (3M+N2=M3N2), которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например: Са3N2 + 6H2O = 3Ca(OH)2 + 2N+3H3. Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота HNO3, ее соли нитраты, а также азотистая кислота HNO2 и ее соли нитриты. Получение В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). В лаборатории чистый («химический») азот получают добавляя при нагревании насыщенный раствор хлорида аммония NH4Cl к твердому нитриту натрия NaNO2: NaNO2 + NH4Cl = NaCl + N2 + 2H2O. Можно также нагревать твердый нитрит аммония: NH4NO2 = N2 + 2H2O. Применение В промышленности газ азот используют главным образом для получения аммиака. Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент, его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения. Вопрос №26 Химическая связь. Основные понятия химической связи Химическая связь. Параметры химической связи. Виды химической связи. Химическая связь – это взаимодействие атомов, обусловленное перекрыванием их электронных облаков и сопровождающееся уменьшением полной энергии системы. Основные параметры хим. связи: длина, прочность и валентные углы. Длина связи – это межъядерное расстояние между химически связанными атомами. Прочность связи характеризуется энергией связи, т.е. энергией, затрачиваемой на разрыв связи. Валентный угол (угол связи) – угол между воображаемыми прямыми, проходящим через ядра химически связанных атомов. Виды химической связи: ковалентная, ионная, металлическая. Ковалентная связь: механизм образования, свойства. Ковалентная связь – возникает при обобществлении электронов, принадлежащих атомам. Механизм образования связи: 1) Механизм спаривания – каждый атом для образования связи поставляет по одному электрону. Образованная электронная пара принадлежит обоим атомам; 2) Донорно-акцепторный механизм – электронная пара предоставляется только одним атомом (донором), атом, получающий одну электронную пару, наз. акцептором. 3) Дативный механизм – каждый атом выполняет одновременно функции и донора и акцептора. Свойства ковалентной связи: 1) Направленность – определяет ориентацию связи в пространстве таким образом, чтобы обеспечивалось максимальное перекрытие электронных облаков. 2) Насыщаемость – способность атома образовывать ограниченное число ковалентных связей. 3) Поляризуемость – способность электрона в молекуле или атоме смещаться под действием внешнего эл. поля. Гибридизация атомных орбиталей. Гибридизация атомных орбиталей – это смещение атомных орбиталей с близкими значениями энергии в результате которого усредняется их форма, размеры, а следовательно и энергия. Число гибридных орбиталей равно числу исходных орбиталей. sp –линейная (180°); sp2 – плоский треугольник (120°); sp3 – тетраэдр (пирамида) (109,5°). Ионная связь. Металлическая связь. Ионная связь – возникает за счёт электростатической силы притяжения между анионом и катионом. Возникает между элементами с большой разностью электроотрицательностью. ∆X > 1,9. Ионные связи, в отличии от ковалентных, характеризуются ненасыщенностью и ненаправленностью. Металлическая связь – когда электроны в металле осуществляют связь между всеми атомами металла. Металл содержит ряд положительных ионов, расположенных в определённых местах кристаллической решётки, и большое количество электронов, свободно перемещающихся по всему кристаллу. Электроны перемещаются потому что они слабо связаны со своими атомами и могут легко отрываться от них. Вопрос №27 «Угольная» кислота и ее соли Угольная кислота H2CO3 – соединение непрочное, существует только в водных растворах. Большая часть растворенного в воде углекислого газа находится в виде гидратированных молекул CO2, меньшая – образует угольную кислоту. Водные растворы, находящиеся в равновесии с CO2 атмосферы, являются кислыми: рН ≈ 4. Угольная кислота – двухосновная, относится к слабым электролитам, диссоциирует ступенчато. При растворении CO2 в воде устанавливается следующее динамическое равновесие: H2O + CO2 ↔ CO2 ∙ H2O ↔ H2CO3 ↔ H+ + HCO3− ↓↑ H+ + CO32−. Будучи двухосновной, угольная кислота образует два ряда солей: средние соли (карбонаты) и кислые (гидрокарбонаты). Большинство солей угольной кислоты бесцветны. Из карбонатов растворимы в воде лишь соли щелочных металлов и аммония. В воде карбонаты подвергаются гидролизу, и поэтому их растворы имеют щелочную реакцию: Na2CO3 + H2O ↔ NaHCO3 + NaOH. Дальнейший гидролиз с образованием угольной кислоты в обычных условиях практически не идет. Растворение в воде гидрокарбонатов также сопровождается гидролизом. Сильные кислоты и даже слабая уксусная кислота вытесняют из карбонатов угольную кислоту: K2CO3 + H2SO4 = K2SO4 + H2O + CO2↑. В отличие от большинства карбонатов, все гидрокарбонаты в воде растворимы. Они менее устойчивы, чем карбонаты тех же металлов и при нагревании легко разлагаются, превращаясь в соответствующие карбонаты: 2KHCO3 = K2CO3 + H2O + CO2↑; Из солей угольной кислоты наибольшее значение имеют карбонат натрия (сода), карбонат калия (поташ), карбонат кальция (мел, мрамор, известняк), гидрокарбонат натрия (питьевая сода) и основной карбонат меди (CuOH)2CO3 (малахит). Вопрос №28 Кислород и озон |