Шпаргалка для экзамена по микробиологии. Экзаменационные вопросы по курсу ветеринарной микробиологии
Скачать 1.47 Mb.
|
Желатина – кислый азотистосодержащий продукт, добываемый при выварке костей и хрящей. Обычно в питательные среды вносят 10-20% желатины. Но ряд бактерий выделяют протеолитические ферменты, разлагающие желатину, что делает его неудобным для применения. По целевому назначению различают: А).Общеупотребительные (основные) среды. Их применяют для культивирования относительно неприхотливых микроорганизмов. Мясная вода: Получение – мясной фарш заливают водопроводной водой 1:2, кипятят 1ч., затем фильтруют, доливают водой до первоначального объема, разливают по емкостям, плотно закрывают и стерилизуют автоклавированием при 120ОС 20 мин. Перевар Хоттингера готовят из мясных отходов путем их триптического гидролиза. Жир, фасции, сухожилия нарезают, заливают кипящей водой 1:2, кипятят, охлаждают до 45ОС, добавляют панкреатин, подщелачивают раствором карбоната натрия, встряхивают, добавляют хлороформ, закрывают и выдерживают в теплом месте 10 дней. Мясо-пептонный бульон (МПБ). Для приготовления используют мясной бульон. К 1 л мясного бульона добавляют 5-10 г пептона (первый продукт гидролиза белка с высокой молекулярной массой) для повышения калорийности среды и 5 г NaCI для создания осмотической активности. Затем устанавливают нейтральную или слабощелочную реакцию среды. Кипятят. Фильтруют через бумажный фильтр, разливают по колбам, пробиркам и стерилизуют автоклавированием при 1200С 20 мин.Мясо–пептонный агар (МПА): к 1 л МПБ добавляют 15-20 г мелко нарезанного агар-агара. Среду нагревают до растворения агара, устанавливают слабощелочную реакцию среды 20%-ным раствором Na2CO3, фильтруют и через воронки разливают в пробирки, стерилизуют автоклавированием при1200 20 мин. Мясо-пептонная желатина (МПЖ). К 1 литру МПБ добавляют желатин до конечной концентрации 10-20%, нагревают, устанавливают слабо-щелочную pH, кипятят, фильтруют, разливают по пробиркам и стерилизуют в кипятильнике Коха текучим паром 3 дня или однократно автоклавированием при 1200С при 1 атм. течение 20 мин. Полужидкий мясо-пептонный агар (ПЖА) готовят, как МПА, но добавляют 0,25% агара, кипятят до его расплавления, устанавливают требуемую pH, фильтруют в горячем виде и стерилизуют автоклавированием. Бульон Хоттингера: основной перевар Хоттингера разводят водой 1:5 (1:8), добавляют 0,5% NaСI, 0,1 г гидрофосфата калия, устанавливают pH, кипятят 150-20 мин, фильтруют, разливают по емкостям и стерилизуют автоклавированием при 1200 20 мин. Агар Хоттингера готовят, добавляя к бульону Хоттингера 2% агар-агара. Питательный бульон содержит: триптический гидролизат кильки –10,05, NaCI- 4,95. 15 г порошка этого бульона растворяют а 1 л дист. Воды, кипятят 2 мин, фильтруют, разливают по емкостям и стерилизуют а автоклаве при 1200С 20 мин (Ph 7,3). Питательный агар содержит: ферментативный гидролизат кормовых дрожжей – 12 г, агар- 12,5 г; NaCI –5,5 г. Навеску 36 г полученного порошка растворяют в 1 л дист. Н2О, кипятят 3 мин, фильтруют, стерилизуют автоклавированием при1200С 20 мин (pН 7,3). Б).Обогащенные среды. Многие виды болезнетворных бактерий плохо растут на обще-употребительных средах, поэтому в основные среды добавляют кровь, сыворотку крови, углеводы и т.д. Такие среды получили название обогащенных. Сывороточный и кровяной агары: к расплавленному и охлажденному стерильному питательному агару добавляют дефибринированной крови или сыворотки крови (лошади, КРС, кролика). Компоненты перемешивают, разливают в чашки Петри, пробирки и оставляют до застывания. Сывороточный и кровяной бульоны готовят аналогично. Растворы углеводов стерилизуют текучим паром или фильтрованием и добавляют в количестве 0,5- 1% к пит. среде. В).Специальные среды. Среды, разработанные с учетом специфических ростовых потребностей ряда бактерий. Среда Мак-Коя: куриные яйца обрабатывают спиртом, проводят через пламя горелки. Стерильно вскрывают, желтки отделяют от белков. К 60 частям желтков добавляют 40 ч физиологического раствора. Компоненты перемешивают и разливают в пробирки и помещают в наклонном положении в аппарат для свертывания сыворотки. Стерилизуют. Среда Терских состоит из фосфатной смеси Зеренсена и кроличьей сыворотки. Смесь Зеренсена: раствор А: гидрофосфат натрия, вода дист.; раствор Б: дигидрофосфат калия, вода дист. К 90 мл раствора А добавляют 10 мл раствора Б и доводят объем до 1000 мл, разливают по пробиркам, стерилизуют, а затем добавляют 6-8 капель стерильной инактивированной сыворотки Элективные (избирательные) среды Предназначены для культивирования определенных групп микроорганизмов, обеспечивающие преимущественное развитие одного вида или группы родственных микроорганизмов и менее пригодные или совсем не пригодные для развития других. Их применяют главным образом для выделения микроорганизмов из мест их естественного обитания и получения накопительных культур. Элективные среды чрезвычайно разнообразны по своему составу. По консистенции среды данного типа могут быть плотными и жидкими. Жидкие среды называются средами обогащения или накопления, их применяют, когда ставят цель увеличить количество искомого микроорганизма смешанной популяции. Среды стерилизуют автоклавированием текучим паром или в автоклаве под давлением при 1 атм 12-30 мин. Молочно-солевой агар предназначен для избирательного культивирования стафилококков. Среда Шустовой предназначена для выделения сальмонелл Среды Раппопорта и Мюллера предназначены для культивирования сальмонелл. Среда Кауфмана – это среда обогащения для сальмонелл Казеиново - угольный агар (КУА) с пенициллином используют для культивирования бордетелл. Д). Дифференциально - диагностические среды. Предназначены для выявления ферментов у микроорганизмов. В состав этих сред входит основная питательная среда, обеспечивающая рост изучаемого микроорганизма, субстрат для обнаружения фермента и индикатор, по изменению цвета которого судят о сдвиге pH среды в результате расщепления субстрата. Среды Гисса используют для изучения ферментативных свойств выделенных культур микроорганизмов. К 100мл дист. Воды добавляют 1% пептона, 0,5 г NaCI. Компоненты растворяют, фильтруют, устанавливают pH,добавляют один из углеводов субстратов, агар-агар, а затем индикатора Андрэдэ. Готовую среду разливают по 3мл в пробирки, стерилизуют текучим паром 3 дня по 30 мин. Среда Энда содержит лактозу в качестве субстрата и предназначена для дифференцировки бактерий, различающихся по способности расщеплять глюкозу. Среда Левина, по целевому назначению аналогична среде Эндо, но содержит другой индикатор. Агар Плоскирева предназначен для выделения сальмонелл, содержит лактозу в качестве субстрата и компоненты, подавляющие рост сопутствующей микрофлоры.
Физические методы стерилизации: 1. Прокаливание (фламбирование). Подвергаются металлические предметы (петли, иглы, скальпель, ножницы, шпатель). 2. Стерилизация путем кипячения. Кипячением стерилизуют иглы, шприцы, пинцеты, ножницы, скальпели и другие инструменты, которые раскладывают в стерилизаторах на решетчатые вставки. В стерилизатор наливают дистиллированную воду в количестве, достаточном для полного закрывания инструментов. В воду можно добавлять 2% гидрокарбоната натрия. Кипятят в течение 25 – 30 минут. 3. Стерилизация сухим жаром. Стерилизация осуществляется при помощи сухого нагретого воздуха в сушильном шкафу с двойными стенками (печь Пастера). Снаружи шкаф облицован теплонепроницаемым материалом. Контроль температурного режима осуществляется при помощи температурного датчика. В сушильном шкафу стерилизуют чистую, предварительно высушенную стеклянную посуду, завернутую в пергаментную бумагу. Режимы стерилизации: 155…1600 – 2 часа; 165…1700 – 1…1,5 часа; 1800 – 1 час. Время экспозиции отмечают от момента достижения температурой заданного значения. 4. Стерилизация текучим паром. Стерилизацию проводят в аппарате Коха, который представляет собой сосуд с неплотно закрытой крышкой. На дне аппарата имеется решетчатая подставка, до уровня которой наливают воду. На подставку помещают сосуд с решетчатым дном, в котором находятся объекты, подлежащие стерилизации (питательные среды). В процессе кипения воды образуются пары, нагревающие содержимое сосуда. Время стерилизации – 30…40 минут. Однократная стерилизация уничтожает только вегетативные формы бактерий, а споры сохраняют свою жизнеспособность, стерилизацию проводят «дробно» - три дня подряд. Таким способом стерилизуют среды с углеводами, молоко, среды с желатиной, то есть субстраты, которые не выдерживают нагревания более 1000С, длительного действия пара или сухого жара. 5. Тиндализация – это дробная стерилизация в водяной бане при 56…580С в течение 5…6 суток: в первый день прогревают в течение 2 часов, в последующие дни – по 1 часу. Метод используется для стерилизации материалов, разрушающихся при температуре выше 58…600С – веществ, содержащих белки (сыворотка крови). 6. Пастеризация – это метод не полной стерилизации, используемы с целью сохранения питательной ценности пищевого продукта, которая может снижаться при кипячении. Продукт нагревают при 800С в течение 30 минут, а затем резко охлаждают до 4…80С. Резкое охлаждение препятствует прорастанию спор и последующему размножению бактерий. 7. Стерилизация паром под давлением (автоклавирование). Это самый эффективный метод стерилизации. Принцип стерилизации основан на том, что чистый насыщенный водяной пар при высоком давлении, конденсируясь, повышает температуру внутри автоклава выше температуры кипения. При повышении давления пара соответственно повышается и температура в стерилизационной камере: 50,6 кПа (0,5 атм.) – 110…1120С, 101,3 кПа (1 атм.) – 120…1210С, 151,9 кПа (1,5 атм.) – 124…1260С, 202,6 кПа (2 атм.) – 132…1330С. Конструкции и объем стерилизационной камеры автоклавов могут быть различными (горизонтальные и вертикальные), но принцип действия остается таким же. В автоклаве стерилизуют питательные среды, выдерживающие температуру выше 1000С, стеклянную посуду, завернутую в бумагу, перевязочный материал, халаты (в биксах). Кроме того, обеззараживают микробные культуры, отработанные питательные среды, посуду. Режимы работы автоклава нуждаются в постоянном контроле. Для этого используют химические и биологические методы. 8. Стерилизация фильтрованием. Осуществляется пропускание материала через бактериологические фильтры. Фильтрация связана с механической задержкой бактерий мелкопористыми фильтрами и с адсорбционной способностью материала из которого изготовлен фильтр. Фильтрации обычно подвергают жидкости не выдерживающие нагревания. Различают фильтры: · керамические – их изготавливают из каолина или кварцевого песка; · асбестовые - фильтры Зейтца (пластины из смеси асбеста с целлюлозой); · мембранные – имеют вид тонких листков белой бумаги, их готовят из гемицеллюлозы, обработанной соответствующими реактивами, температурой и прессованием. Эти фильтры различают по диаметру и величине пор, имеют наиболее точную калибровку. Стерильность фильтратов контролируют высевом на питательные среды с термостатированием. 9. Стерилизация ультрафиолетовым излучением. В лаборатории источником ультрафиолетового излучения обычно служат бактерицидные лампы, используемые для обеззараживания воздуха. Стерилизация ультразвуком. С помощью ультразвука стерилизуют воду, молоко, некоторые продукты, кожевенное сырье. Стерилизующее действие ультразвука связано с разрушением бактериальной клетки под действием кавитационных полостей, возникающих в цитоплазме.
ВЫДЕЛЕНИЕ ЧИСТОЙ КУЛЬТУРЫ АЭРОБОВ
Метод Пастера – последовательное разведение в 10 пробирках с жидкой средой капли смеси бактерий Метод Коха – на расплавленной плотной питат среде, перелиливал содержимое каждой пробирки в отдельную чашку Петри. Выделение с помощью селективных сред (бруцеллы – на глюкозо=печ среде с генцианвиолетом, микобактерии – яично-крахмадбные среды)
Выделение с помощью биопробы Метод Мечникова-Шукевича – для выделение культуры подвижных м/о на скошенный ага ВЫДЕЛЕНИЕ ЧИСТОЙ КУЛЬТУРЫ АНАЭРОБОВ Посев на ср Китт-Тароцци Посев в высокий столбик сахарного агара (м-д Вейнберга) Посев на трубки Виньяла-Вейона М-д Фортнера (на кровяной сахарный МПА) М-д Цейслера (пересев по Дригальскому на кровяной сахарный МПА)
Строение и химический состав. Частицы многих бактериофагов состоят из головки округлой, гексагональной или палочковидной формы диаметром 45—140 нм и отростка толщиной 10—40 и длиной 100—200 нм. Другие бактериофаги не имеют отростка; одни из них округлы, другие — нитевидны, размером 8х800 нм. Содержимое головки состоит преимущественно из дезоксирибонуклеиновой кислоты (ДНК) (длина её нити во много раз превышает размер головки и достигает 60—70 мкм, эта нить плотно скручена в головке) или рибонуклеиновой кислоты (РНК) и небольшого количества (около 3%) белка и некоторых других веществ. Отросток имеет вид полой трубки, окруженной чехлом, содержащим сократительные белки, подобные мышечным. У ряда бактериофагов чехол способен сокращаться, обнажая часть стержня. На конце отростка у многих бактериофагов имеется базальная пластинка с несколькими шиловидными или другие формы выступами. От пластинки отходят тонкие длинные нити, которые способствуют прикреплению фага к бактерии. Оболочки головки и отростка состоят из белков. Общее количество белка в частице фага 50—60% , нуклеиновых кислот — 40—50% . Каждый бактериофаг обладает специфическими антигенными свойствами, отличными от антигенов бактерии-хозяина и других фагов. Имеются антигены, общие для ряда фагов (особенно содержащих РНК). Распространение. Бактериофаги найдены для большинства бактерий, в том числе патогенных и сапрофитных, а также .для актиномицетов (актинофаги) и сине-зелёных водорослей. Встречаются бактериофаги в кишечнике человека и животных, в растениях, почве, водоёмах, сточных водах, навозе и т. д. Бактериофаги почвенных микроорганизмов влияют на течение микробиологических процессов в почве. Размножение. Бактериофаг прикрепляется своим отростком к бактериальной клетке и, выделяя фермент, растворяет клеточную стенку; затем содержимое его головки через канадец отростка переходит внутрь клетки, где под влиянием нуклеиновой кислоты фага останавливается синтез бактериальных белков, ДНК и РНК и начинается синтез нуклеиновой кислоты, а затем и белков фага. Часть этих белков — ферменты, другая часть образует оболочку зрелой частицы бактериофага Более мелкие, сферические фаги попадают в бактерии без участия отростка. Если клетка бактерии заражена одновременно частицами бактериофага, различающимися между собой по ряду свойств, то среди потомства, кроме частиц, подобных родителям, будут и такие, у которых эти свойства встречаются в новой комбинации, т. к. при размножении бактериофагов наблюдается рекомбинация — обмен кусками нитей нуклеиновой кислоты, являющейся носителем наследственной информации. Частицы крупных фагов выходят из бактерии, разрушая её, а некоторых мелких и нитевидных — из живых бактерий. Одни бактериофаги весьма специфичны и способны лизировать клетки только одного какого-либо вида микроорганизмов (монофаги), другие — клетки разных видов (полифаги). Бактериофагов делят на вирулентные, вызывающие лизис клетки с образованием новых частиц, и умеренные (симбиотические), которые адсорбируются клеткой и проникают в неё, но лизиса не вызывают, а остаются в клетке в латентной (скрытой) неинфекционной форме (профаг). Культуры, содержащие латентный фаг, называются лизогенными. Лизогения передаётся потомству бактерии. Лизогенная культура может содержать 2—3 и более фагов; она, как правило, устойчива против находящихся в ней фагов (лишь небольшая часть клеток лизируется и освобождает зрелые фаги). Воздействуя на лизогенную культуру ультрафиолетовыми или рентгеновскими лучами, перекисью водорода и некоторыми другими веществами, можно значительно увеличить количество клеток, освобождающих фаг (т. н. индукция бактериофагов). Лизогения широко распространена среди всех видов бактерий и актиномицетов. В ряде случаев многие свойства лизогенной культуры (токсичность, подвижность бактерий и др.) зависят от наличия в ней определённых профагов. Описано много мутаций бактериофагов, сопровождающихся изменением их литической активности, строения частиц и «колоний», устойчивости против неблагоприятных воздействий и другие свойств. Бактериофаги играют большую роль в изменчивости и эволюции микробов, причём механизмы воздействия их на клетку разные. Бактериофаги могут резко изменять азотфиксирующую способность азотобактера, токсичность и антигенные свойства патогенных бактерий и др. Практическое значение бактериофагов Некоторые фаги (одни или в сочетании с антибиотиками) применяли для профилактики (фагопрофилактики) и лечения (фаготерапии) ряда бактериальных инфекционных болезней человека (дизентерия, брюшной тиф, холера, чума, стафилококковые и анаэробная инфекции и др.) и животных. Однако антибиотики и другие химиотерапевтические средства оказались эффективнее фагов, в связи с чем применение их с лечебной целью сузилось. Бактериофаги успешно применяются при определении вида бактерий, актиномицетов. Бактериофаги могут вредить производству антибиотиков, аминокислот, молочных продуктов, бактериальных удобрений и в других отраслях микробиологического синтеза. Велико значение бактериофагов для теоретических работ по генетике и молекулярной биологии. Механизм терапевтического действия. Антибактериальный, который оказывают препараты бактериофагов, обусловлен специфическим лизисом, патогенных бактерий в очаге воспаления. Гибель бактерий наступает вследствие того, что вирулентные бактериофаги адсорбируются на поверхности гомологичной микробной клетки, проникают в ее цитоплазму, где интенсивно размножаются, используя структурные компоненты клетки и разрушают ее. Бактериофаги не затрагивают бактерии, ее составляющие нормальную флору организма. При отсутствии чувствительных к бактериофагу бактерий, длительность пребывания бактериофагов в организме 3 дня. Бактериофаг предохраняет организм от инфекции как профилактическое средство. Показания к применению. Препараты бактериофагов применяются при инфекционных заболеваниях желудочно-кишечного тракта, органов моче-половой системы, систем органов кровообращения, дыхания, опорно-двигательного аппарата, гнойно-септических заболеваний новорожденных, дисбактериозов различной локализации, а также при других заболеваниях, вызванных условно-патогенными возбудителями рода Klebsiella, Escherichiae, Proteus, Pseudomonas, Staphylococcus. Streptococcus. В связи с наблюдаемым снижением терапевтического действия антибиотиков, препараты бактериофагов используются в клинической практике как альтернатива антибиотикам и другим химиотерапевтическим препаратам. Препараты бактериофагов не уступают антибиотикам по эффективности и не вызывают, при этом, побочных токсических и аллергических реакций Применение Применение препаратов бактериофагов для лечения инфекционных заболеваний стимулирует факторы специфического и неспецифического иммунитета и, поэтому особенно эффективно для лечения хронических воспалительных заболеваний на фоне иммунодепрессивных состоянии. Отсутствие побочных патологических реакций позволяет успешно использовать препараты бактериофагов у новорожденных и детей первого года жизни. Противопоказания Не имеют противопоказаний к применению. Способ применения. Препараты бактериофагов назначают внутрь, а также используют для орошения ран, для введения в дренированные полости - брюшную, плевральную, полости пазух носа, среднего уха, абсцессов, ран, матки, мочевого пузыря, а также использую в виде аэрозолей. При пероральном и аэрозольном применении, а также при нанесении на поверхность слизистых оболочек бактериофаги проникают в кровь и лимфу и выводятся через почки санируя моче-выводящие пути. Препараты бактериофагов могут использоваться в сочетании с любыми другими лечебными препаратами. Назначение препаратов бактериофагов Бактериофаг стафилококковый Лечение и профилактика гнойных инфекций кожи, слизистых вызванных стафилококковыми бактериями а также при дисбактериозах. Применяется для лечения карбункулов, фурункулов, хронически остеомиелитов, флегмон маститов, циститов, холециститов, при ангине, энтероколите и др. Бактериофаг колипротейный Лечение и профилактика энтероколитов, кольпитов колипротейной этиологии и дисбактериозов. Бактериофаг псевдомонас аэругиноза (синегнойный) Лечение заболеваний различных органов и гнойных инфекций кожи, вызванных данным видом бактерий. Применяется для лечения абсцессов, хирургических инфекций, гнойноосложнснных ран, хронических остеомиелитов, маститов, циститов и др. Бактериофаг протейный Лечение и профилактика гнойных инфекций, вызванных протейными бактериями, а также при дисбактериозах. Применяется для лечения абсцессов, гнойноосложненных ран, циститов,хронических остеомиелитов и р. Пиобактериофаг Лечение и профилактика различных форм гнойно-воспалительных и энтеральных заболеваний, вызванных бактериями стафилококков, стрептококков, эшерихий коли, клебсиелл, пневмоний, псевдомонас аэругиноза, протея. Применяется для лечения хирургических инфекций, ожогов, гнойных поражений кожи, циститов и пиелонефритов, гастроэнтероколитов, холециститов, дисбактериоз кишечника, а также пиодермий, энтеритов и дисбактериоза кишечника новорожденных и детей грудного возраста. Бактериофг клебсиеллезный Лечение озены, риносклеромы, и гнойно-воспалительных энтеральных заболеваний, вызванных бактериями клебсиелл. Применяется для лечения отитов, воспалений пазух носа и для других гнойно-воспалительных заболеваний уха, горла и носа. Интести-бактериофаг Лечение острых и хронических заболеваний дизентерии, сальмонеллеза, диспепсии, колита, энтероколита. Бактериофаг дизентерийный Лечение больных дизентерией и профилактика этого заболевания. Санация реконвалесцентов. Препарат активен в отношении шигелл Зонне и Флекснера Бактериофаг сальмонеллезный групп АВСДЕ Применяют для лечения детей и взрослых больных сальмонеллезами, санации реконвалесцентов, а также для профилактики но эпидпоказаниям. |