Главная страница
Навигация по странице:

  • Ферменты обратимых реакций гликолиза и глюконеогенеза

  • 1. Образование фосфоенолпирувата

  • 2. Гидролиз фруктозо-1,6-бисфосфата

  • Суммарный результат глюконеогенеза:2 Пируват + 4 АТФ + 2 ГТФ + 2 (NADH + Н

  • рибозо-5-фосфата

  • Регуляция содержания глюкозы в крови в абсорбтивном и постабсорбтивном периодах.

  • Глюкозооксидазный метод.

  • Вопрос 29. Нарушение углеводного обмена. Гипо- и гипергликемия

  • ШПОРЫ БХ 2 ИТОГОВАЯ. Эндергонические процессы, протекающие с увеличением свободной энергии. Катаболические превращения


    Скачать 2.83 Mb.
    НазваниеЭндергонические процессы, протекающие с увеличением свободной энергии. Катаболические превращения
    АнкорШПОРЫ БХ 2 ИТОГОВАЯ.docx
    Дата26.10.2017
    Размер2.83 Mb.
    Формат файлаdocx
    Имя файлаШПОРЫ БХ 2 ИТОГОВАЯ.docx
    ТипДокументы
    #9845
    страница4 из 10
    1   2   3   4   5   6   7   8   9   10

    Глюконеогенез - процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Процесс протекает в основном в печени и менее интенсивно в корковом веществе почек, а также в слизистой оболочке кишечника.

    66.png749.png

    Ферменты обратимых реакций гликолиза и глюконеогенеза: 2 - фосфоглюкоизомераза; 4 - альдолаза; 5 - триозофосфатизомераза; 6 - глицеральдегидфосфатдегидрогеназа; 7 -фосфоглицераткиназа; 8 - фосфоглицератмутаза; 9 - енолаза. Ферменты необратимых реакций глюконеогенеза: 11 - пируваткарбоксилаза; 12 - фосфоенолпируваткарбоксикиназа; 13 - фруктозо-1,6-бисфосфатаза; 14 -глюкозо-6-фосфатаза. I-III -субстратные циклы. Большинство реакций глюконеогенеза протекает за счёт обратимых реакций гликолиза (реакции 9, 8, 7, 6, 5, 4, 2) и катализируется теми же ферментами. Однако 3 реакции гликолиза термодинамически необратимы.

    1. Образование фосфоенолпирувата из пирувата - первая из необратимых стадий глюконеогенеза.

    Схема всех реакций, протекающих на первой необратимой стадии глюконеогенеза, представлена на рисунке справа.

    2. Гидролиз фруктозо-1,6-бисфосфата и глюкоза-6-фосфата.

    Отщепление фосфатной группы из фруктозо-1,6-бисфосфата и глюкозо-6-фосфата - также необратимые реакции глюконеогенеза. В ходе гликолиза эти реакции катализируют специфические киназы с использованием энергии АТФ. В глюконеогенезе они протекают без участия АТФ и АДФ и ускоряются не киназами, а фосфатазами - ферментами, принадлежащими к классу гидролаз. В печени существуют 4 фермента, которые принимают участие только в глюконеогенезе и катализируют обходные реакции необратимых стадий гликолиза. Это - пируват-карбоксилаза, фосфоенолпируваткарбоксикиназа, фруктозе-1,6-бисфосфатаза и глюкозо-6-фосфатаза.

    Энергетический баланс глюконеогенезаиз пирувата

    В ходе этого процесса расходуются 6 моль АТФ на синтез 1 моль глюкозы из 2 моль пирувата. Четыре моль АТФ расходуются на стадии синтеза фосфоенолпирувата из оксалоацетата и ещё 2 моль АТФ на стадиях образования 1,3-бисфосфоглицерата из 3-фосфоглицерата.

    Суммарный результат глюконеогенеза:
    2 Пируват + 4 АТФ + 2 ГТФ + 2 (NADH + Н
    +)+ 4 Н20 → Глюкоза + 4 АДФ + 2 ГДФ + 6 H3PO4+ 2 NAD+
    Билет 24. Регуляция гликолиза и глюконеогенеза.

    По сравнению с другими органами печень отличается наиболее сложным обменом глюкозы. Кроме пары противоположных процессов (синтеза и распада гликогена), в печени могут происходить ещё два противоположно направленных процесса - гликолиз и глюконеогенез. В большинстве других органов происходит только гликолиз. Переключение печени с гликолиза на глюконеогенез и обратно происходит с участием инсулина и глюкозагона и осуществляется с помощью: 1.) аллостерической регуляции активности ферментов; 2.) ковалентной модификации ферментов путём фосфорилирования/дефосфорилирования; 3.)индукции/репрессии синтеза ключевых ферментов.

    Регуляторные воздействия направлены на ферменты, катализирующие необратимые стадии гликолиза и глюконеогенеза, сочетание которых называют "субстратными", или "холостыми" циклами. "Субстратные" циклы - парные комбинации процессов синтеза и распада метаболитов. Как уже упоминалось, сочетание процессов синтеза и распада гликогена или необратимых реакций гликолиза и соответствующих им необратимых реакций глюконеогенеза может составить подобный цикл. Название "субстратный цикл" означает объединение реакций синтеза и распада субстрата. Название "холостой" отражает результат работы подобного цикла, заключающийся в бесполезном расходовании АТФ. Направление реакции первого субстратного цикла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюкозы в крови повышается (до 8-10 ммоль/л). Активность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реакция образования глюкозо-6-фосфата. Направление реакций второго субстратного цикла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фруктозо-2,6-бисфосфата. Фруктозо-2,6-бисфосфат - метаболит, образующийся в незначительных количествах из фруктозо-6-фосфата и выполняющий только регуляторные функции. Образование фруктозо-2,6-бисфосфата путём фосфорилирования фруктозо-6-фосфата катализируетбифункциональный фермент (БИФ), который катализирует также и обратную реакцию. В регуляции третьего субстратного цикла основная роль принадлежит пируваткиназе, фосфорилированная форма которой неактивна, а дефосфорилированная – активна. Координация скорости реакции II и III субстратных циклов достигается с помощью фруктозо-1,6-бисфосфата - продукта II субстратного цикла (гликолитическое направление), который является аллостерическим активатором пируваткиназы.

    название

    ферменты

    активатор

    ингибитор

    гликолиз

    Гексокиназа

    Фосфофруктокиназа

    Пируваткиназа

    Гл-6-фосф

    Атф,цитрат

    Атф,аланин


    Амф, фр 2-6-бифосф

    Фр 1-6 дифосф

    глюконеогенз

    Пируваткарбоксилаза

    Фосфоенолпируваткарбоксилаза

    Фруктозо 1-6 дифосфатаза

    Адф

    Адф

    Амф, фр 2-6 бифосф

    Ацитилкоа

    Ацетилкоа

    Цитрат, атф


    Билет 25. Превращение ПВК. Цикл Кори. Спиртовое брожение.

    При анаэробных условиях пировиноградная кислота превращается в молочную кислоту (лактат) или в этиловый спирт (этанол), или в пропионовую кислоту. Этот анаэробный процесс называют еще брожением. В данном случае речь идет о молочнокислом, спиртовом и пропионовом брожении (соответственно). Молочная кислота образуется из пирувата при метаболизме ряда микроорганизмов, а также в клетках мышц многоклеточных организмов. Суммарная реакция превращения глюкозы в лактат имеет следующий вид:

    1304771532_8.png

    Цикл Кори — совокупность биохимических ферментативных процессов транспорта лактата из мышц в печень, и дальнейшего синтеза глюкозы из лактата, катализируемое ферментами глюконеогенеза.

    450px-cori_cycle.svg.png

    Биологическое значение:

    При интенсивной мышечной работе, а также в условиях отсутствия или недостаточного числа митохондрий (например, в эритроцитах илимышцах) глюкоза вступает на путь анаэробного гликолиза с образованием лактата. Лактат не может далее окисляться, он накапливается (при его накоплении в мышцах раздражаются чувствительные нервные окончания, что вызывает характерную ломоту в мышцах). С током крови лактат поступает в печень. Печень является основным местом скопления ферментов глюконеогенеза (синтез глюкозы из неуглеводных соеднений), и лактат идет на синтез глюкозы. Реакция превращения лактата в пируват катализируется лактатдегидрогеназой, далее пируват подвергается окислительному декарбоксилированию или может подвергаться брожению.

    50.jpg56745.png
    Вопрос 26. Аэробный распад глюкозы.

    Окисление глюкозы до СО2и Н2О (аэробный распад).Аэробный распад глюкозы можно выразить суммарным уравнением:

    С6Н12О6 + 6 О2 → 6 СО2 + Н2О + 2820 кДж/моль.
    b5873p334-a1.jpg

    Аэробный распад глюкозы. 1-10- реакции аэробного гликолиза; 11 - малат-аспартатный челночный механизм транспорта водорода в митохондрии; 2 (в кружке) - стехиометрический коэффициент. Аэробным гликолизом называют процесс окисления глюкозы до пировиноградной кислоты, протекающий в присутствии кислорода. Все ферменты, катализирующие реакции этого процесса, локализованы в цитозоле клетки.

    снимок.png

    снимок.pngВопрос 27.Схема пентозофосфатного цикла:

    схема цикла.jpg
    Биологическая роль пентозофосфатного цикла заключается в образовании рибозо-5-фосфата ( обеспечивает клетки рибозой, необходима для синтеза рибозы) и НАДРН+Н+ - используется преимущественно в процессах биосинтеза. Общее уравнение:

    6 Глюкозо-6-фосфат + 12NADP+ +2H2O = 5 Глюкозо-6-фосфат +12NADPH+H+ +12H+ + 6CO2
    Вопрос 28. Регуляция углеводного обмена в организме.

    Результат регуляции метаболических путей превращения глюкозы - постоянство концентрации глюкозы в крови. Концентрация глюкозы в артериальной крови в течение суток поддерживается на постоянном уровне 60-100 мг/дл (3,3-5,5 ммоль/л). После приёма углеводной пищи уровень глюкозы возрастает в течение примерно 1 ч до 150 мг/дл (∼8 ммоль/л, алиментарная гипергликемия), а затем возвращается к нормальному уровню (примерно через 2 ч).
    Регуляция содержания глюкозы в крови в абсорбтивном и постабсорбтивном периодах. Для предотвращения чрезмерного повышения концентрации глюкозы в крови при пищеварении основное значение имеет потребление глюкозы печенью и мышцами, в меньшей мере - жировой тканью. В печени глюкоза откладывается в печени в форме гликогена, остальная часть превращается в жиры и окисляется, обеспечивая синтез АТФ. Ускорение этих процессов инициируется повышением инсулинглюкагонового индекса. Другая часть глюкозы, поступающей из кишечника, попадает в общий кровоток. Примерно 2/3 этого количества поглощается мышцами и жировой тканью. Это обусловлено увеличением проницаемости мембран мышечных и жировых клеток для глюкозы под влиянием высокой концентрации инсулина. Остальная часть глюкозы общего кровотока поглощается другими клетками (инсулинонезависимыми).При нормальном ритме питания и сбалансированном рационе концентрация глюкозы в крови и снабжение глюкозой всех органов поддерживается главным образом за счёт синтеза и распада гликогена. Лишь к концу ночного сна, может несколько увеличиться роль глюконеогенеза, значение которого будет возрастать, если завтрак не состоится и голодание продолжится.

    Глюкозооксидазный метод. Фермент глюкозооксидаза катализирует окисление глюкозы до глюконовой кислоты и образование перекиси водорода H2O2:

    http://www.terramedica.spb.ru/ld1_2008/baliabina12.jpg

    Фермент пероксидаза в присутствии перекиси водорода окисляет хромогенный краситель типа о-дианизидина, что приводит к образованию окрашенного продукта, интенсивность окраски которого пропорциональна содержанию глюкозы в среде инкубации:

    http://www.terramedica.spb.ru/ld1_2008/baliabina13.jpg

    Фотометрию проводят при длине волны 400 нм. Реакция протекает в два этапа. На 1 этапе происходит окисление глюкозы до глюконовой кислоты при участии фермента глюкозооксидазы. Глюкозооксидаза высокоспецифична по отношению к β-D-глюкозе. В водных растворах глюкоза находится в λ-форме (36%)и β-форме (64%). Окисление глюкозы при участии глюкозооксидазы требует превращения λ- в β-форму, которое ускоряется под влиянием фермента мутаротазы.

    2 этап, включающий пероксидазную реакцию, является менее специфичным. Многие вещества: мочевая кислота, аскорбиновая кислота, билирубин, гемоглобин, тетрациклины, глутатион — приводят к занижению результатов, вероятно, конкурируя с хромогеном за H2O2. Большая часть мешающих определению веществ может быть удалена из раствора их осаждением.

    Глюкозооксидазный метод пригоден для определения глюкозы в спинномозговой жидкости. В моче содержатся высокие концентрации веществ, способных вмешиваться в пероксидазную реакцию, в частности, мочевая кислота, что способствует получению ложноотрицательных результатов. В связи с этим глюкозооксидазный метод следует с осторожностью использовать для определения глюкозы в моче.
    Вопрос 29. Нарушение углеводного обмена. Гипо- и гипергликемия

    При некоторых состояниях можно наблюдать повышение содержания глюкозы в крови – гипергликемию, а также понижение концентрации глюкозы – гипогликемию. Гипергликемия является симптомом различных заболеваний, связанных с поражением эндокринной системы.

    Сахарный диабет. В регуляции гликолиза и глюконеогенеза большую роль играет инсулин. При недостаточности содержания инсулина возникает заболевание, сахарный диабет»: повышается концентрация глюкозы в крови (гипергликемия), появляется глюкоза в моче(глюкозурия) и уменьшается содержание гликогена в печениМышечная ткань  утрачивает способность утилизировать глюкозу крови. В печени при общем снижении интенсивности биосинтетических процессов: биосинтеза белков, синтеза жирных кислот из продуктов распада глюкозы– наблюдается усиленный синтез ферментов глюконеогенеза. При введении инсулина больным диабетом происходит коррекция метаболических сдвигов: нормализуется проницаемость мембран мышечных клеток для глюкозы, восстанавливается соотношение между гликолизом и глюконеогенезом. Инсулин контролирует эти процессы на генетическом уровне как индуктор синтеза ключевых ферментов гликолизагексокиназы, фос-фофруктокиназы и пируваткиназыИнсулин также индуцирует синтез гликогенсинтазы. Одновременно инсулин действует как репрессор синтеза ключевых ферментов глюконеогенеза. индукторами синтеза ферментов глюконеогенеза служат глюкокортикоиды. Гипергликемия может возникнуть не только при заболевании поджелудочной железы, но и в результате расстройства функции других эндокринныхжелез, участвующих в регуляции углеводного обмена. при гипофизарных заболеванияхопухолях коркового вещества надпочечников, гиперфункции щитовидной железы. Иногда гипергликемия появляется во время беременности. возможна при органических поражениях ЦНС, расстройствах мозгового кровообращения, болезнях печени .

    Гипогликемия. Нередко гипогликемия связана с понижением функций тех эндокринных желез, повышение функций которых приводит к гипергликемиигипогликемию можно наблюдать при гипофизарной кахексии, аддисоновой болезни, гипотиреозе. Резкое снижение уровня глюкозы в крови отмечается при аденомах поджелудочной железы вследствие повышенной продукции инсулина β-клетками панкреатических островков. Кроме того, гипогликемия может быть вызвана голоданием, продолжительной физической работой, приемом β-ганглиоблока-торов. Низкий уровень глюкозы в крови иногда отмечается при беременности, лактации. Гипогликемия может возникнуть при введении больным сахарным диабетом больших доз инсулина. Как правило, она сопровождает почечную глюкозурию, возникающую вследствие снижения «почечного порога» для глюкозы.
    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта