Федеральное агентство по образованию иркутский государственный технический университет
Скачать 7.53 Mb.
|
Глава 2 ВЫБОР СТАЛЕЙ ДЛЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ И ИХ РАСЧЕТНЫЕ ХАРАКТЕРИСТИКИ _____________________________________________________________ Класс стали выбирают на основе вариантного проектирования и технико-экономического анализа по СНиП ІІ-23-81*. Выбор класса стали для строительных конструкций зависит от следующих параметров, влияющих на работу материала: – температуры среды, в которой монтируются и эксплуатируются конструкции, влияющей на повышенную опасность хрупкого разрушения при пониженных температурах; – характера нагружения, определяющего особенность работы материала и конструкций при динамической, вибрационной и переменной нагрузках; – вида напряженного состояния (одноосное сжатие или растяжение, плоское или объемное напряженное состояние) и уровня возникающих напряжений (сильно или слабо нагруженные элементы); – способа соединения элементов, определяющих уровень собственных напряжений, степень концентрации напряжений и свойства материалов в зоне соединения; – толщины проката, применяемого в элементах (с увеличением толщины изменяются свойства стали). В зависимости от степени ответственности конструкций зданий и сооружений, а также от условий их эксплуатации все конструкции разделяются на четыре группы. К первой группе относятся основные сварные конструкции либо их элементы (подкрановые балки, балки рабочих площадок, элементы конструкций бункеров и т.п.), работающие в особо тяжелых условиях или подверженные непосредственному воздействию динамических, вибрационных или подвижных нагрузок. Ко второй группе относятся основные сварные конструкции либо их элементы (фермы, ригели рам, балки перекрытий и покрытий и т.п.), работающие при статических нагрузках преимущественно на растяжение, а также конструкции и элементы первой группы при отсутствии сварных соединений. К третьей группе относятся основные сварные конструкции либо их элементы (колонны, стойки, опорные плиты, элементы настила перекрытий, вертикальные связи по колоннам с напряжением в связях свыше 0,4Ryи т.п.), работающие при статических нагрузках преимущественно на сжатие, а также конструкции и элементы второй группы при отсутствии сварных соединений. К четвертой группе относятся вспомогательные конструкции зданий и сооружений (связи, кроме указанных в третьей группе, элементы фахверка, лестницы, площадки, ограждения и т.п.), а также конструкции и их элементы третьей группы при отсутствии сварных соединений. Стали для стальных конструкций зданий и сооружений групп 2 и 3 принимаются по табл. 2.1. Таблица 2.1 Стали для конструкций зданий и сооружений по ГОСТ 27772-88
Обозначения, принятые в табл. 2.1: а) фасонный прокат толщиной до 11 мм, а при согласовании с изготовителем – до 20 мм; листовой – всех толщин; б) требование по ограничению углеродного эквивалента по ГОСТ 27772-88 для толщин свыше 20 мм; в) требование по ограничению углеродного эквивалента по ГОСТ 27772-88 для всех толщин; г) для района ΙΙ4 для неотапливаемых зданий и конструкций, эксплуатируемых при температуре наружного воздуха, применять прокат толщиной не более 10 мм; д) при толщине проката не более 11 мм допускается применять сталь категории 3; е) кроме опор ВЛ, ОРУ и КС; ж) прокат толщиной до 10 мм; и) кроме района ІІ4 для неотапливаемых зданий и конструкций, эксплуатируемых при температуре наружного воздуха. Знак «+» означает, что данную сталь следует применять; знак «–» означает, что данную сталь в указанном климатическом районе применять не следует. Знак «+г)» означает, что данную сталь следует применять с соблюдением оговоренных выше требований. Требования к элементам конструкций, не имеющих сварных соединений, могут быть снижены, так как отсутствие остаточных полей сварочных напряжений, более низкая концентрация напряжений и другие факторы улучшают их работу. В пределах каждой группы конструкций в зависимости от температуры эксплуатации к сталям предъявляются требования по ударной вязкости при различных температурах. Окончательный выбор стали в пределах каждой группы должен выполняться на основании сравнения технико-экономических показателей (расхода стали и стоимости конструкции), а также с учетом заказа металла и технологических возможностей завода-изготовителя. Стали по прочностным свойствам делятся условно на три группы: – обычной прочности (σy < 29 кН/см2); – повышенной прочности (29 кН/см2 ≤ σy < 40 кН/см2); – высокой прочности (σy ≥ 40 кН/см2). К сталям обычной прочности относятся низкоуглеродистые стали классов С235 – С285 различной степени раскисления (кипящие, полуспокойные и спокойные). К сталям повышенной прочности относятся низколегированные стали классов С345 – С390. Высокое значение ударной вязкости при мелкозернистой структуре позволяет использовать эти стали для конструкций «северного исполнения». К сталям высокопрочным относятся стали классов прочности С440 – С590. За счет более высоких прочностных характеристик применение сталей повышенной и высокой прочности приводит к экономии металла, но дополнительные затраты на легирование и термообработку делают их дороже низкоуглеродистых сталей обыкновенного качества. В зависимости от температуры эксплуатации конструкций и степени опасности хрупкого разрушения для сталей С345 и С375 проводятся испытания на ударную вязкость при разных температурах. Поставляются эти стали по четырем категориям (табл. 2.2). Стали для конструкций, возводимых в климатических районах Ι1, Ι2, ΙΙ2 и ΙΙ3, но эксплуатируемых в отапливаемых помещениях, следует принимать как для климатического района ΙΙ4 согласно табл. 2.1, за исключением сталей С245 и С275 для конструкций группы 2. Таблица 2.2 Нормируемые характеристики для категорий поставки
Расчетные сопротивления при растяжении, сжатии и изгибе листового, широкополосного универсального и фасонного проката принимаются по табл. 2.3. Расчетное сопротивление сдвигу проката принимается Rs = 0,58Ry. Расчетное сопротивление смятию торцевой поверхности (при наличии пригонки) Rp = Run/γm принимается по табл. 2.4. Выбор материалов для сварки. В современном строительстве для соединения элементов получила распространение главным образом электродуговая сварка. В зависимости от условий изготовления и монтажа, конструктивных особенностей узлов и элементов металлоконструкций, основных конструкционных материалов применяются наиболее распространенные способы электродуговой сварки: ручная, механизированная и автоматическая. Прочность сварных соединений зависит от прочности основного металла соединяемых элементов, прочности наплавленного металла шва, формы и вида соединения и связанного с этим распределения напряжений в соединении, характера силового воздействия на соединение, технологии сварки. Прочность наплавленного металла шва зависит от материала электродной проволоки, состава электродного покрытия при ручной сварке и флюса при автоматической и механизированной технологиях сварки. Правильный выбор сварочных материалов дает возможность при надлежащей технологии сварочного процесса обеспечить прочность наплавленного металла, не уступающую прочности основного металла. Таблица 2.3 Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений
П р и м е ч а н и я: 1 За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм). 2 За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88. 3 Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициент надежности по материалу с округлением до 5 МПа. Ручную сварку выполняют плавящимися электродами, которые подразделяют на типы и марки (ГОСТ 9467-75*). Все электроды для ручной сварки открытой дугой выполняются из низкоуглеродистой проволоки марки Св-08 или для сварки конструкций, работающих в тяжелых условиях, – Св-08А. Начальные буквы свидетельствуют, что проволока сварочная, цифры указывают среднее содержание углерода в сотых долях процента. Буква А в конце обозначения марки проволоки и типа электрода (Э42А) указывает на повышенную чистоту металла вследствие ограничения содержания серы и фосфора (металл шва обладает повышенной пластичностью, характеризуемой относительным удлинением, и повышенной ударной вязкостью). Для сварки низколегированных сталей проволока в своем химическом составе имеет легирующие элементы, обозначаемые в марке буквами, принятыми при обозначении марок низколегированных сталей. Электроды подразделяются на типы по значению временного сопротивления металла шва. Например, электрод типа Э42 позволяет получить шов, имеющий σu ≥ 42 кН/см2, и применяется для сварки сталей c σu ≤ 42 кН/см2; электрод типа Э50 дает соответственно σu ≥ 50 кН/см2 и применяется для сварки сталей, имеющих σu ≤ 50 кН/см2. Таблица 2.4 Расчетные сопротивления проката смятию |