Главная страница

Глик Молекулярная биотехнология. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. Пер с англ. М. Мир, 2002. 589 с


Скачать 9.74 Mb.
НазваниеГлик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение. Пер с англ. М. Мир, 2002. 589 с
АнкорГлик Молекулярная биотехнология.doc
Дата28.01.2017
Размер9.74 Mb.
Формат файлаdoc
Имя файлаГлик Молекулярная биотехнология.doc
ТипДокументы
#189
страница74 из 88
1   ...   70   71   72   73   74   75   76   77   ...   88

Генная терапия in vivo


Генная терапия in vivo предполагает доставку «терапевтического» гена непосредственно в клетки определенной ткани пациента (рис. 21.6). Ретровирусные векторы проникают только в делящиеся клетки-мишени, однако во многих тканях, на которые направлена генная терапия, большинство клеток не делится. Поэтому были разработаны разнообразные вирусные и невирусные векторные системы доставки «терапевтических» генов, учитывающие большое число потенциальных тканей-мишеней (кожа, мышцы, легкие, мозг, толстая кишка, селезенка, печень, клетки крови) и расположение их в организме человека. «Идеальная» система доставки должна обеспечивать высокую эффективность поглощения «терапевтического» гена клетками-мишенями, минимальность его внутриклеточного разрушения при транспорте в ядро и поддержание уровня экспрессии, достаточного для облегчения состояния больного.



Рис. 21.6. Схематическое представление генной терапии in vivo. Клонированный «терапевтический» ген (Ген X) кодирует белок, корректирующий генетический дефект. Этот ген доставляется к клеткам определенной ткани пациента с наследственным заболеванием и экспрессируется в них. Промотор р, под контролем которого осуществляется транскрипция, тканеспецифичен .



Вирусные системы доставки генов

Ретровирусные векторы

Опыт клинических испытаний с участием более 200 пациентов показывает, что дефектные по репликации ретровирусные векторы не оказывают каких-либо неблагоприятных побочных эффектов. Тем не менее безопасности их применения продолжают придавать большое значение. Создана конструкция, называемая плазмовирусом, которая содержит ретровирусные гены gagи pol, находящиеся под контролем 5'-LTR-промотора, a также «терапевтический» ген и ген env, управляемые цитомегаловирусным промотором. После трансфекции плазмовирус запускает образование дефектных по репликации вирусных частиц, причем вероятность рекомбинации с образованием компетентных по репликации ретровирусов очень мала. Вектор может переносить не более 3,5 т. п. и. ДНК, но и длина большинства потенциальных «терапевтических» кДНК и генов — супрессоров опухолей составляет 0,5—2 т. п. н.

В ретровирусную векторную систему внесены дополнительные усовершенствования: увеличено число образующихся вирусных частиц, повышена эффективность трансдукции, осуществлена генноинженерная модификация, обеспечивающая их проникновение в неделящиеся клетки, повышена специфичность инфекции, В последнем случае геном рекомбинантного ретровирусного вектора упаковывается в оболочку другого вируса, белок которой и определяет специфичность связывания ретровируса и спектр

494            ГЛАВА 21
инфицируемых им клеток. Это явление называется фенотипическим смешиванием (pseudotype formation). Фенотипически смешанный вирус получают с помощью котрансфекции клеточной линии, которая синтезирует продукты генов gag и pol, рекомбинантным ретровирусным вектором и вектором, экспрессирующим ген  env другого вируса. Изменяя ген env, можно как сузить спектр инфицируемых вирусом клеток до строго определенного типа, так и расширить его. Кроме того, в ген env ретровируса можно встроить нуклеотидную последовательность, кодирующую пептид, который связывается с определенным клеточным рецептором и обеспечивает внедрение рекомбинантного ретровируса в нужные клетки. И наконец, можно добиться специфичности экспрессии терапевтического гена, осуществляя ее под контролем промотора, специфичного для определенных клеток.
Аденовирусные векторы

Аденовирусы инфицируют неделящиеся клетки человека и широко используются в качестве живых вакцин, которые предотвращают респираторные инфекции и гастроэнтериты, не оказывая побочного действия. Эти свойства делают аденовирусы перспективными для доставки генов в клетки-мишени.

Для получения аденовирусного вектора провели котрансфекцию клеточной линии, синтезирующей продукты аденовирусного гена El, двумя участками генома аденовируса (рис. 21.7). Один из них может существовать в виде плазмиды в Е. coliи содержит вместо E1-области «терапевтический" ген, фланкируемый нуклеотидными последовательностями аденовируса, а второй представляет собой молекулу ДНК аденовируса, которая лишена 5'-концевого участка, включающего El-область, и имеет перекрывающийся участок с несущей терапевтический ген плазмидой. Рекомбинация между Двумя трансфицирующими фрагментами ДНК в области их перекрывания приводит к восстановлению полноразмерного аденовирусного гена, в котором вместо E1-области находится терапевтический ген. Продукты гена E1, поставляемые клеткой-хозяином, инициируют образование вирусных частиц, высвобождающихся из клетки в результате лизиса. Клонирующая емкость аденовирусного вектора составляет около 7,5 т. п. н. В отсутствие рекомбинации трансфицирующие молекулы ДНК, обладающие недостаточной длиной, не могут упаковываться в вирусные частицы. Вероятность того, что между областью El в геноме клетки-хозяина и ДНК рекомбинантного аденовируса произойдет рекомбинация с образованием компетентных по репликации вирусов, чрезвычайно мала.

После того как рекомбинантный аденовирус инфицирует клетку-мишень, его ДНК проникает в ядро, где и происходит экспрессия «терапевтического» гена. Рекомбинантная ДНК не интегрирует в хромосому и сохраняется непродолжительное время, поэтому при проведении генотерапии с использованием аденовирусных векторов необходимо вводить их с определенной периодичностью.

Аденовирусные векторы использовали в клинических испытаниях по генной терапии муковисцидоза. Первые результаты не обнадеживали: ген трансмембранного регуляторного белка, нарушения в котором приводят к муковисцидозу (CFTR, от англ, cysticfibrosis transmembrane regulator), был перенесен лишь в небольшое число клеток пациента, а многократное введение рекомбинантного аденовируса и низкий уровень экспрессии некоторых аденовирусных генов привели к развитию у пациентов выраженного иммунного ответа и гибели трансдуцированных клеток.

Эту проблему решали разными путями. Например, сконструировали «пакующую» клеточную линию, содержащую El-область и ряд аденовирусных генов, которые не входят в состав трансдуцирующей ДНК и не попадают в клетки-мишени. Затем удалось добиться того, чтобы ни один из аденовирусных генов не включался в трансдуцирующую ДНК. Для этого линеаризовали плазмиду Е. соli(28 т. п. н.), которая обеспечивает экспрессию одного или большего числа терапевтических генов и не содержит аденовирусных генов, и пришили к ее концам фрагменты ДНК (по 4 т, п. н.), содержащие точку начала репликации аденовирусной ДНК, последовательность, ответственную за ее упаковку, и сигнал терминации. Длина продукта лигирования (36 т. п. н.) соответствует длине полноразмерного генома аденовируса. Затем полученным продуктом и аденовирусным гено-

Генная терапия           495




Рис. 21.7. Аденовирусный вектор, В клетку-хозяина, несущую интегрированный в геномную ДНК функциональный ген El аденовируса, вводят встроенную в сегмент аденовирусного генома (0—17 единицы карты) плазмиду с «терапевтическим» геном (ТГ) и участок геномной ДНК аденовируса (9—100 единицы карты). Длина генома аденовируса равна 100 единицам. В результате рекомбинации (штриховая линия) между перекрывающимися участками плазмиды и ДНК аденовируса образуется молекула ДНК, эквивалентная полноразмерному вирусному геному. Рекомбинантная ДНК, содержащая «терапевтический» ген, упаковывается и высвобождается из клетки после лизиса. Образующиеся вирусные частицы дефектны по репликации. Плазмидная ДНК, входящая в состав конечной генетической конструкции, не влияет на упаковку рекомбинантной ДНК (не показано).

496              ГЛАВА 21
мом без E1-области и последовательности, ответственной за упаковку, провели котрансфекцию клетки-хозяина, экспрессирующей El-гены. Молекула ДНК аденовируса, дефектная по репликации и упаковке, поставляет гены для синтеза компонентов вируса, а продукт лигирования реплицируется и упаковывается в вирусные частицы. При этом около 99% высвобождаемых вирусных частиц содержат молекулу ДНК с «терапевтическим" геном (генами). С помощью центрифугирования их можно отделить от дефектных по репликации вирусов, которые все же образуются в незначительном количестве. ДНК-клонирующая емкость такой системы достигает 28 т. п. н.

Эффективность аденовирус-опосредованного переноса генов можно повысить, если сконструировать вирус, проникающий преимущественно в определенную клетку-мишень. Для этого в ген, ответственный за образование нитей аденовируса, следует включить последовательность, кодирующую домен белка, который связывается с клеточноспецифичным рецептором.

Векторы на основе аденоассоциированных вирусов

Аденоассоциированные вирусы (ААВ) — это небольшие непатогенные вирусы человека с одноцепочечным ДНК-геномом (4,7 т. n. H.), который может интегрировать в специфический сайт 19-й хромосомы. Такое название они получили потому, что для продуктивной инфекции им необходимы белки другого вируса (вируса-помощника), например аденовируса. После того как ААВ попадает в ядро, его геном с помощью полимераз клетки-хозяина преобразуется в двухцепочечную ДНК и транскрибируется.

Отсутствие патогенности делает ААВ весьма перспективным вектором для доставки в организм человека «терапевтических» генов. Рекомбинантный ААВ получают с помощью котранс-фекции клетки-хозяина, инфицированной каким-нибудь аденовирусом (вирусом-помощником), двумя плазмидами (рис, 21.8). Одна из них несет «терапевтический» ген, фланкированный инвертированными концевыми повторами (длиной от 125 п. н.) ААВ, а вторая — два его гена, repи cap, ответственные за репликацию генома и синтез капсида соответственно. После лизиса инфицированных клеток рекомбинантные ААВ отделяют от аденовируса с помощью центрифугирования и диализа, а оставшиеся в образце аденовирусы (вирусы герпеса) инактивируют нагреванием. Рекомбинантный ААВ может нести ДНК-вставку размером до 4,5 т. п. н., не вызывает развития иммунного ответа, поскольку не содержит ААВ-генов, но и не может интегрировать в 19-ю хромосому из-за отсутствия гена rep.

В одном из доклинических испытаний эффективность in vivo трансдукции гепатоцитов мыши (рекомбинантный ААВ вводили внутривенно) была повышена в 900 раз с помощью предварительного облучения печени нетоксическими дозами и введения нерекомбинантного (дикого типа) ААВ. В этом случае кДНК фактора IX системы свертывания крови («терапевтический» ген) экспрессировалась в течение как минимум 5 мес на уровне, достаточном для коррекции дефекта при гемофилии. В I фазе клинических испытаний по генной терапии муковисцидоза в легкие вводили CFTR-AAB-вектор; при этом не развивалась воспалительная реакция, а вектор сохранялся до 70 сут. Чтобы определить, образуется ли продукт гена CFTRв количестве, достаточном для достижения терапевтического эффекта, нужны дальнейшие клинические испытания.

Векторы на основе вируса простого герпеса

Для того чтобы ретро- и аденовирусные векторы инфицировали специфические типы клеток, нужно модифицировать их с помощью генной инженерии, однако в природе существуют вирусы, уже обладающие сродством к определенному




Рис. 21.8. Вектор на основе аденоассоциированного вируса (ААВ). Проведена котрансфекция клетки-хозяина, инфицированной аденовирусом-помощником, двумя плазмидами, одна из которых содержит «терапевтический» ген (ТГ). фланкированный инвертированными концевыми повторами (ITR) ААВ, а другая — гены ААВ, ответственные за репликацию (rep) и формирование капсида (cap), которые находятся под контролем промотора (р), и последовательность полиаденилирования (ра). Высвободившиеся после лизиса частицы рекомбинантного ААВ и аденовируса разделяют центрифугированием, а оставшиеся аденовирусные частицы инактивируют нагреванием.

Генная терапия           497






498             ГЛАВА 21
типу клеток. Так, вирус простого герпеса 1 типа (HSV) инфицирует нейроны и персистирует в них, часто вызывая у человека так называемые «простудные» высыпания, а иногда — энцефалит с летальным исходом. Вирус присутствует в нейронах в латентной форме, а при стрессе и гормональных нарушениях инициируется литический цикл.

Существует множество заболеваний, поражающих центральную и периферическую нервную систему: опухоли, метаболические и иммунные нарушения, нейродегенеративные заболевания (болезнь Альцгеймера, болезнь Паркинсона). Неврологические заболевания, как правило, бывают хроническими и приводят к госпитализации больного чаще, чем все остальные болезни вместе взятые. Вследствие тропности HSV к нервным клеткам он является подходящим вектором для генной терапии таких заболеваний.

Геном HSV представляет собой двухцепочечную молекулу ДНК длиной 152 т. п. н. Капсид вируса сливается с мембраной нейрона, и его ДНК транспортируется в ядро. Репродуктивный цикл вируса состоит из литической (репликация ДНК и образование вирусных частиц) и латентной (конденсация вирусного генома и активация как минимум двух так называемых латентно-ассоциированных промоторов) фаз.

Замена сегмента генома длиной примерно 30 т. п. н. ДНК-вставкой не оказывает заметного влияния на репликацию HSV, его упаковку или инвазионную способность. С другой стороны, большой размер генома HSV затрудняет генетические манипуляции с ним. Для решения этой проблемы в плазмиду Е. coli, которая может переносить до 8 т. п. н. чужеродной ДНК, встроили «усеченный» геном HSV, состоящий из точки инициации репликации и последовательности, ответственной за упаковку. Полученные HSV-производные назвали ампликонами (ампликон-плазмидами),

Большинство систем доставки генов на основе HSV предполагает использование вируса-помощника, который поставляет белки, необходимые для репликации и сборки вируса, но не образует инфекционные вирусные частицы, поскольку его геном модифицирован и не способен упаковываться. Для получения рекомби-нантного HSV осуществляют трансфекцию ампликон-плазмиды в инфицированную вирусом-помощником клетку-хозяина. ДНК ампликона реплицируется по типу «катящегося кольца»: внутренняя кольцевая цепь играет роль матрицы, а во внешней происходит разрыв, и к свободной 3’-концевой ОН-группе ковалентно присоединяются нуклеотиды. Растущая цепь представляет собой линейную тандемную последовательность сегментов, комплементарных внутренней цепи, и, отсоединяясь от нее, сама становится матрицей для синтеза комплементарной цепи, В результате образуется линейная двухцепочечная молекула — множественная копия ампликона. Длина каждого ампликона составляет 15 т. п. н,, поэтому набор из 10 тандемных копий соответствует полноразмерному геному HSV и упаковывается в HSV-капсид (рис. 21.9).

Рекомбинантный HSV можно получить и с помощью котрансфекции клеток-хозяев, в которых вирус может реплицироваться, с помощью ДНК HSV дикого типа и плазмиды, которая содержит «терапевтический» ген, фланкированный последовательностями ДНК из вспомогательных участков HSV-генома, ДНК HSV дикого типа реплицируется в ядре клетки-хозяина, при этом в результате рекомбинации «терапевтический» ген может встроиться в HSV-геном. Затем частицы как рекомбинантного, так и дикого типа HSV упаковываются и высвобождаются из клеток. Доля рекомбинантных HSV в общем вирусном пуле очень мала, поэтому вирусы размножают, а затем с помощью ПЦР или гибридизации выявляют «терапевтический» ген в образовавшихся бляшках. Рекомбинантный вирус хранят в условиях, не допускающих его загрязнения HSV дикого типа (рис. 21.10).

Доклинические испытания на экспериментальных животных показали, что гены, доставленные с помощью HSV-векторов в клетки мозга и периферической нервной системы, экспрессируются и поддерживаются длительное время. Однако до начала I фазы клинических испытаний HSV-векторов необходимо провести дополнительные исследования.

1   ...   70   71   72   73   74   75   76   77   ...   88


написать администратору сайта