Главная страница

Физа. экзамен физа. Итоговое по разделу Общая физиология Теоретические вопросы


Скачать 0.79 Mb.
НазваниеИтоговое по разделу Общая физиология Теоретические вопросы
Дата27.09.2021
Размер0.79 Mb.
Формат файлаdocx
Имя файлаэкзамен физа.docx
ТипДокументы
#237437
страница2 из 15
1   2   3   4   5   6   7   8   9   ...   15

Законы проведения возбуждения


1.Закон двухстороннего проведения. В изолированном нервном проводнике возбуждение распространяется в двух направлениях

2.Закон физиологической целостности /анодный блок, катодическая депрессия - анатомическая целостность сохранена, физиологическая нарушена/

3.Закон изолированного проведения возбуждения/возбуждение не переходит с волокна на волокно, изоляция-швановские клетки/
Механизмы проведения возбуждения

В безмякотных волокнах – последовательно за счет разности потенциалов между возбужденным и невозбужденным участком. В мякотных волокнах – скачкообразно /сальтоторно/, может через 2-3 перехвата Раньве.
18. Нейросекреция. Строение, классификация синапсов, их физиологические свойства. Медиаторы, природа и свойства медиаторов. Синаптические рецепторы, их характеристика. Системы образования и инактивации медиаторов. Этапы проведения возбуждения в синапсе. Особенности передачи возбуждения в синапсе.

Нейросекреция - это способность нейрона синтезировать различные химические соединения, которые обладают биологической активностью.

Синапсы делятся по способу передачи возбуждения на

  1. синапсы с электрической передачей возбуждения

  2. синапсы с химической передачей возбуждения

Первая группа синапсов немногочисленна до 1-3% от общего числа.

Строение синапсов

  1. Пресинаптическая мембрана - аксон, подходя к объекту иннервации, распадается на терминали, на тончайшие нервные волоконца, которые заканчиваются небольшим утолщением.

Свойства пресинаптической мембраны:

а) содержит медиатор - находится в везикулах. У каждого конкретного синапса всегда один и тот же медиатор, т.е. какой медиатор в данном синапсе генетически запрограммирован. Один конкретный синапс - мономедиаторен.

б) область пресинаптической мембраны электровозбудима - она возбуждается и мембрана деполяризуется, если в эту область по аксону к терминали приходит потенциал действия.

в) область пресинаптической мембраны - хемоневозбудима. Химическим путем мембрану не возбудить.

У каждого медиатора существует целая система синтеза в нейроне. Медиатор образуется в теле нейрона и диффундирует по аксону (аксональный ток), накапливается в области пресинаптической мембраны, частично медиатор образуется в области пресинаптической мембраны. Второй путь накопления медиатора в синапсе - аптейк - обратный захват медиатора областью пресинаптической мембраны, это - высокоэнергетический процесс.

В области пресинаптической мембраны медиатор прочно «упаковывается» в везикулы, которые в покое прочно связаны с цитоскелетом клетки.

2. Постсинаптическая мембрана - это мембрана второй клетки, иннервируемой клетки.

Субсинаптическая мембрана - участок постсинаптической мембраны, на котором её свойства выражены максимально.

Свойства субсинаптической мембраны :

а) она хемовозбудима.

б) она электроневозбудима

в) она имеет большое число однотипных хеморецепторов, которые воспринимают действие медиатора и высокую концетрацию соответствующих ионных каналов (хемочувствительные,рецепторуправляемые каналы)

3. Синаптическая щель.

Синаптические рецепторы весьма многообразны по структурной организации и молекулярному воплощению, имеют три последовательных функциональных элемента: узнающий участок, элемент связи и преобразователь. Узнающий участок призван выделить «свой» медиатор и отреагировать на его появление. Преобразователь, или исполнительный элемент, непосредственно реализует активацию рецептора и запускает потенциал действия.

По расположению: пресинаптические и постсинаптические рецепторы.

Пресинаптические рецепторы реализуют механизм обратного захвата. Если медиатора выделено слишком много, то он появляется в синаптической щели. Рецепторы это улавливают и прекращают передачу медиатора, а лишнее количество захватывается обратно в сому.

По структуре: ионотропные (быстрые) и метаботропные (медленные).

Ионотропные рецепторы:

  • Связаны с каналами для мелких ионов (натрий, калий, хлор);

  • Непосредственно контролируют открытие ионных каналов;

  • Генерируют очень быстрый ответ мембраны нейрона в виде изменения в ней ионных токов для Na, K, Ca, Cl.

Метаботропные рецепторы:

  • Действуют через систему вторичных посредников и запускают каскад реакций внутри клетки;

  • Активизируют внутриклеточные процессы с помощью вторичных посредников;

  • Генерируют медленные метаболические ответы.

Холинорецепторы – рецепторы, взаимодействующие с ацетилхолином. Бывают трёх типов:

А) Мускариновые – возбуждаемые мускарином (возбуждение)

Б) Никотиновые – возбуждаемые никотином (эйфория)

В) Мускарино-никотиновые – постсинаптические рецепторы нервно-мышечных тканей.
Медиаторы являются

1.приизводными аминокислот.

По механизмам передачи возбуждения в синапсах:

1) химические;

2) электрические.

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи медиаторов.

Различают несколько видов химических синапсов:

1) холинэргические. В них происходит передача возбуждения при помощи ацетилхолина;

2) адренэргические. В них происходит передача возбуждения при помощи трех катехоламинов;

3) дофаминэргические. В них происходит передача возбуждения при помощи дофамина;

4) гистаминэргические. В них происходит передача возбуждения при помощи гистамина;

5) ГАМКэргические. В них происходит передача возбуждения при помощи гаммааминомасляной кислоты, т. е. развивается процесс торможения.

1. Электрические синапсы способны к двухстороннему проведению возбуждения.

2. ПД возникает в постсинаптической мембране лишь при одновременной активации нескольких нейронов (пространственная суммация) или при повторных разрядах в одном синапсе (временная суммация).

19. Физиологические свойства и функции поперечно-полосатых (скелетных) мышц. Виды и режимы сокращений скелетных мышц. Фазные мышечные сокращения. Одиночное мышечное сокращение, его фазы. Суммация мышечных сокращений. Тетанус и его виды. Оптимум и пессимум раздражения. Нефазные сокращения, их классификация.

Поперечно-полосатая мускулатура составляет основу скелетной мускулатуры. Она обладает двумя важнейшими функциями:

1.Функция движения.

2.Функция поддержания позы (позно-тоническая функция).

Поперечно-полосатая мускулатура обладает тремя свойствами- возбудимостью, проводимостью и сократимостью.

Возбудимость скелетных мышц ниже, чем у нервов, и больше (выше), чем у клеток паренхиматозных органов. Возбудимость скелетных мышц значительно выше, чем у гладкой мускулатуры.

Проводимость. Скорость проведения возбуждения в мышцах, ниже, чем в нервах и больше, чем у паренхиматозных тканей. У скелетных мышц проводимость больше, чем у гладких.

Сократимость - это способность мышцы уменьшать свою длину или/и увеличивать свое напряжение. Сокращение - это процесс. Процесс сокращения может выражаться в изменении длины (укорочение мышцы), изменении напряжения мышцы, в изменении того и другого показателя.

Все мышечные сокращения могут быть:

1. изотонические сокращения - это такие сокращения, когда напряжение (тонус) мышц не изменяется ("изо" - равные), а меняется только длина сокращения (мышечное волокно укорачивается).

2. изометрические - при неизменной длине меняется только напряжение мышц.

3. ауксотонические - смешанные сокращения (это сокращения, в которых при­сутствует и один и другой компонент).

Фазы мышечного сокращения:

1. Латентный период - это время от нанесения раздражения до появления видимого ответа. Время латентного периода тратится на:

а) возникновение возбуждения в мышце;

б) распространение возбуждения по мышце;

в) электромеханическое сопряжение (на процесс взаимосвязи возбуждения с сокращением); г) преодоление вязко-эластических свойств мышц.

2. Фаза сокращения выражается в укорочении мышцы или в изменении напряжения, либо и в том и в другом.

3. Фаза расслабления - возвратное удлинение мышцы, или уменьшение возникшего напряжения или то и другое вместе.

4. Фаза остаточных колебаний

С позиций фаз все сокращения делятся на: фазные, нефазные

Фазные сокращения - это те сокращения, в которых четко выделяют все три фазы. Нефазные сокращения - это такие сокращения, в которых какая- либо из фаз смазана, отсутствует, растянута на неопределенное время.

Фазные сокращения.

К ним относятся: одиночное мышечное сокращение, тетанус

Одиночное мышечное сокращение:

1. латентный период 2. фаза сокращения 3. фаза расслабления

На скелетных мышцах одиночное мышечное сокращение может возникнуть только в экспериментальных условиях (в искусственно созданных условиях). В естественных условиях скелетные мышцы никогда не ответят одиночным мышечным сокращением. Потому что к ним импульсы в естественных условиях приходят группами. Однако одиночное мышечное сокращение лежит в основе всех других видов мышечных сокращений.

Тетанус - это длительное суммированное фазное сокращение.

1.всегда суммированные одиночные мышечные сокращения.

2.всегда фазное сокращение (можно выделить все три фазы).

Механизм формирования тетануса. В основе формироваия тетанического сокращения лежит процесс суммации. Если в момент расслабления мышцы, когда она находится в фазе относительной рефрактерности, нанести повторное раздражение, то виден эффект суммации - одно мышечное сокращение наслоится на другое. Если нанести через какой-то интервал времени еще одно раздражение, то снова виден эффект суммации. И каждый раз новая суммация на серию импульсов будет начинаться с нового уровня.

Зубчатый тетанус возникает тогда, когда импульс приходит в фазу расслабления. Но бывает, что приходящий импульс застает мышцу на пике сокращения и тогда возникает полная суммация амплитуды. При такой частоте возникает сокращение - гладкий тетанус (возрастание амплитуды). Для одного и того же объекта в одном и том же физиологическом состоянии большая частота будет давать гладкий тетанус, меньшая - зубчатый, совсем редкая частота - одиночное мышечное сокращение. Если уменьшить частоту, то в какой-то момент гладкий тетанус перейдет в зубчатый. Для каждой конкретной мышцы своя частота получения гладкого и зубчатого тетануса. От функционального состояния мышцы (от ее лабильности) зависит, какой будет тетанус - гладкий или зубчатый.

Нефазные мышечные сокращения

1. Тонус - это длительное, суммированное, постоянно существующее у мышцы напряжение мышечных волокон. Т.е. тонус у живой мышцы существует всегда. В нем нет начала и нет конца. Поэтому тонус относят к нефазным мышечным сокращениям. Это признак того, что мышечный объект живой. Выраженность его может меняться. В нем нельзя выделить фазы.

2. Контрактура - это длительное, суммированное мышечное сокращение с растянутым периодом расслабления.

Оптимум и пессимум частоты - Частота раздражений, вызывающая максимальную по интенсивности функциональную реакцию, оптимальной, а частота, ведущая к ослаблению реакций,— пессимальной.
20. Сила мышц, ее характеристики. Моторные единицы, их виды, свойства моторных единиц. Работа мышц. Динамическая, статическая, преодолевающая и уступающая работа. Этапы работы. Утомление. Теории утомления.

Сила мышцы - это способность за счет мышечных сокращений преодолевать внешнее сопротивление. Различают абсолютную и относительную силу.

Сила мышцы определяется по максимальной величине груза, который мышца способна переместить или удержать.

Абсолютная сила мышцы – это максимальная масса груза, которую мышца способна переместить в пересчёте на 1 см2 её поперечного сечения.

Двигательная (моторная) единица – это мотонейрон, нервно-мышечные синапсы и иннервируемые мышечные волокна, Выделяют три основных типа:

1. Медленные неутомляемые мышцы.

2. Быстрые, устойчивые к утомлению.

3. Быстрые легко утомляемые.

Мышцы выполняют работу:

А) Динамическая работа:

1. Преодолевающая работа (когда сила мышцы, прикладываемая к объекту, больше, чем масса объекта, что позволяет переместить или удержать груз в пространстве).

2. Уступающая работа (когда сила мышцы, приложенная к объекту, меньше массы, которую мышца способна переместить).

Б)Статическая работа – выполняется при изометрическом режиме сокращения

Этапы работы:

1. Врабатываемость – этот этап работы отличается постепенностью нарастания нагрузок, ритмичностью.

2. Период устойчивой работоспособности – это период максимальной работоспособности

3. Утомление – снижение работоспособности.

Теорий утомления:

а) теория засорения – при работе в мышце накапливается избыточное количество метаболитов, многие из них токсичны.

б) теория отравления – мышца отравляется собственными метаболитами,

в) теория удушения – нехватка кислорода.

г) теория истощения – истощение энергетических запасов.

Первично в нервно-мышечном препарате утомление происходит в синапсе. Синапс обладает низкой лабильностью.
21. Функциональная характеристика неисчерченных (гладких) мышц. Морфофункциональные особенности гладких мышц.

Возбудимость и проводимость гладких мышц существенно ниже, чем у скелетных. Возбуждение распространяется по гладким мышцам от клетки к клетке за счет нексусов. Это позволяет быстро охватить возбуждением все миоциты данной гладкой мышцы. Гладкие мышцы сокращаются медленно, так как расщепление АТФ в них идет в 100-1000 раз меньше, чем в скелетных мышцах, по этому гладкие мышцы приспособлены к длительному тоническому сокращению без развития утомления, при этом их энергозатраты крайне невелики.

Гладкие мышцы подразделяются:

1 Мышцы, обладающие спонтанной активностью /автоматией/,

2 Мышцы, не обладающие спонтанной активностью

Спонтанная активность зависит от интенсивности обмена веществ в миоцитах, от степени их растяжения, а также на выраженность СА влияют нервные и гуморальные влияния.

Вторая группа сокращается только при вегетативных влияниях/нервных, гуморальных/.

Механизм мышечного сокращения гладких мышц отличается от такового у скелетных.

Электромеханическое сопряжение в гладких мышцах происходит медленней из-за более медленного переноса кальция, чем в скелетных мышцах.

22. Современная теория мышечного сокращения и расслабления. Роль сократительных белков и ионов Са2+ в развитии мышечного сокращения. Электромеханическое сопряжение.

Механизм мышечного сокращения.

Мышцы состоят из мышечных волокон. В каждом мышечном волокне содержится до 1000 сократительных элементов – миофибрилл. Каждая миофибрилла состоит из множества параллельно лежащих тонких и толстых нитей.

Толстые нити – это белок миозин, тонкие нити – это белок актин и расположенные на нем вспомогательные белки тропонин и тропомиозин.

К Z-мембране прикреплены нити актина. Между двумя нитями актина лежит одна толстая нить миозина (между двумя Z-мембранами) и она взаимодействует с двумя нитями актина. На нитях миозина есть выросты (ножки), на концах выростов имеются головки миозина (150 молекул миозина). Головки ножек миозина обладают АТФ-азной активностью.

Тропомиозин, когда мышца расслаблена, пространственно препятствует взаимодействию головок миозина с активными центрами актина. Рядом с тропомиозином располагается молекула тропонина.

Сокращение мышц возникает тогда, когда в районе нитей актина и миозина создается избыток ионов кальция. Возникает тропонин-кальциевый комплекс, и молекула тропонина меняет свою конфигурацию таким образом, что выталкивает тропомиозин в желобок между двумя отростками миозина. Это и смещает нити актина и миозина относительно друг друга на одно гребковое движение.

Все это – теория скольжения. То есть, при сокращении мышечного волокна не происходит укорочения нитей актина и нитей миозина, а происходит их скольжение относительно друг друга. Это энергоемкий процесс.
1   2   3   4   5   6   7   8   9   ...   15


написать администратору сайта