Коммуникации эндокринная
Скачать 1.15 Mb.
|
диабет является следствием нарушения образования вазопрессина гипофизом. Причинами такого нарушения могут быть травмы головы, инфекции или опухоли гипоталамуса, аутоиммунные заболевания. Нефрогенный несахарный диабет является следствием нарушения функции V2 рецепторов вазопрессина. Рецептор кодируется геном, расположенным на Х хромосоме (Xq2.8), поэтому врожденная форма этого заболевания характерна для мужчин. Подобные нарушения функции рецепторов могут быть при некоторых заболеваниях почек. Почка при таком повреждении неспособна отвечать даже на высокие уровни антидиуретического гормона. Повышенное образование разбавленной мочи, может быть следствием психологиче- ского волнения (псигогенная полидипсия), при котором люди пьют большие объемы воды. Еще одной достаточно редкой причиной полиурии могут быть генетические дефекты гена кодирующего аквапорины – водные каналы в эпителии канальцев. При повышенном образовании вазопрессина выделение мочи не прекращается. При травмах и опухолях мозга, инфекционных заболеваниях, нарушениях мозгового кровообращения, опухолях, секретирующих вазопрессмн может развиться синдром избы- точной или нерегулируемой секреции вазопрессина. При этом, несмотря на значительную гипонатриемию и гипоосмолярность плазмы, почки продолжают выделять концентрированную мочу. Усиленная реабсорбция воды приводит к значительному разведению электро- литов плазмы. Резко снижается концентрация натрия в плазме (ниже 120 ммоль/л), хотя общее содержание натрия в организме остается в пределах нормы. При снижении уровня натрия до 110 ммоль/л и осмолярности плазмы до 250 ммоль/кг развивается сонливость, апатия, дезориентация, психозы, спазмы мышц вплоть до судорог, теряется аппетита, снижается температура тела. При дальнейшем снижении содержания натрия в крови наступает кома и смерть. Нарушения функций гипоталамо-гипофизарной системы характеризуются разнообразными клиническими проявлениями. Гипофункция может быта следствием уменьшения или полного подавления продукции тройных гормонов (пангипопитуитаризм) или частичного, при котором происходит нарушение синтеза и секреции одного или нескольких гормонов. Недостаток тропных гормонов гипофиза ведёт к резкому снижению функции периферических эндокринных желёз. Выпадение гонадотропной функции гипофиза приводит к недостаточности яичников, аменорее, атрофии матки, молочных желёз. Вследствие снижения продукции кортикотропина развивается хроническая недостаточность коры надпочечников. Дефицит гормона роста особенно опасен у детей. Известно несколько типов нарушений способности к нормальному росту вследствие абсолютного или относительного дефицита СТГ. Гипофизарный нанизм, или карликовость (от греч. nanos - карлик). Причина нарушения роста и физического развития - дефицит гормона роста. Большинство форм гипофизарного нанизма развивается вследствие мутаций гена гормона роста. У большинства больных гипофизарным нанизмом нарушение роста сочетается с другими эндокринными нарушениями. В некоторых случаях гипосекреция гормона роста может быть результатом аутоиммунного повреждения соматотрофных клеток гипофиза, черепно-мозговой травмы или радиации. Нанизм Ларона возникает вследствие дефекта рецепторов гормона роста гепатоцитов и снижения синтеза ИФР-1 и ИФР-2. Концентрация СТГ в крови при этом повышена. Карликовость африканских пигмеев - результат нарушения пострецепторной передачи гормонального сигнала СТГ. При этой форме карликовости концентрация гормона роста в плазме нормальная, а концентрация ИФР-1 значительно снижена. Гиперфункция гормона роста обычно возникает в,результате образования гормонпродуцирующей опухоли соматотрофных клеток гипофиза, что приводит к повышению ростовой активности. Если гиперсекреция гормона роста возникает у детей и подростков с незакончившимся процессом окостенения эпифизар-ных хрящей, но продолжающимся ростом длинных костей, развивается гигантизм (от греч. gigantos - великан). При гигантизме увеличение костей, мягких тканей и органов происходит сравнительно пропорционально. Гиперсекреция гормона роста у взрослых людей приводит к развитию акромегалии (от греч. akros - крайний, megas - большой), при которой рост тела ускоряется, но не в длину, а в ширину с диспропорциональным увеличением размеров лица, кистей рук, стоп, черепа, увеличением размеров внутренних органов. У многих (∼40%) больных акромегалией обнаруживается мутация в αs-субъединице G-белка плазматической мембраны соматотрофных клеток, в результате которой αs-субъединица теряет ГТФ-азную активность. Вследствие этого развиваются продолжительная активация аденилатциклазы, избыточное образование цАМФ и избыточная секреция соматотропного гормона. 13. Гормоны щитовидной железы. Химическая природа. Биологическая роль. Измене- ние метаболизма при гипо- и гиперфункции. Причины и проявления эндемического зоба. Гормоны щитовидной железы В щитовидной железе синтезируются гормоны - йодированные производные тирозина. Они объединены общим названием йодтирони-ны. К ним относят 3,5,3'-трийодтиронин (трийодтиронин, Т3) и 3,5,3',5'- тетрайодтиронин (Т4), или тироксин (рис. 11-17). Йодтиронины участвуют в регуляции многих процессов метаболизма, развития, клеточной дифференцировки, в регуляции экспрессии генов. Заболевания, возникающие в результате нарушений синтеза, секреции и функций йодти-ронинов, - наиболее распространённые заболевания эндокринной системы. Биосинтез йодтиронинов Йодтиронины синтезируются в составе белка тиреоглобулина (Тг) (рис. 11-18) в фолликулах, которые представляют собой морфологическую и функциональную единицу щитовидной железы. Тиреоглобулин - гликопротеин с молекулярной массой 660 кД, содержащий 115 остатков тирозина. 8-10% массы тиреоглобулина представлено углеводами. Содержание йодида в организме составляет 0,2-1%. Тиреоглобулин синтезируется на рибосомах шероховатого ЭР в виде претиреоглобулина, затем переносится в цистерны ЭР, где происходит формирование вторичной и третичной структуры, включая процессы гликозилирования. Из цистерн ЭР Тиреоглобулин поступает в аппарат Гольджи, включается в состав секреторных гранул и секретируется во внеклеточный Рис. 11-17. Структура гормонов щитовидной железы. коллоид, где происходит йодирование остатков тирозина и образование йодтиронинов. Йодирование тиреоглобулина и образование йодтиронинов осуществляется в несколько этапов (рис. 11-18). Транспорт йода в клетки щитовидной железы. Йод в виде органических и неорганических соединений поступает в ЖКТ с пищей и питьевой водой. Суточная потребность в йоде составляет 150-200 мкг. 25-30% этого количества йодидов захватывается щитовидной железой. Транспорт йодида в клетки щитовидной железы - энергозависимый процесс и происходит при участии специального транспортного белка против электрохимического градиента (соотношение концентраций I- в железе к концентрации I- в сыворотке крови в норме составляет 25:1). Работа этого йодид-переносящего белка сопряжена с Nа+,К+-АТФ-азой. Окисление йода. Окисление I- в I+ происходит при участии гемсодержащей тиреоперокси-дазы и Н2О2 в качестве окислителя. Рис. 11-18. Схема синтеза йодтиронинов. Тиреоглобулин синтезируется на рибосомах, далее поступает в аппарат Гольджи, а затем во внеклеточный коллоид, где он хранится и где происходит йодирование остатков тирозина. Образование йодтиронинов происходит в несколько этапов: транспорт йода в клетки щитовидной железы; окисление йода; йодирование остатков тирозина; образование йодтиронинов; транспорт йодтиронинов в кровь. ЭР - эндоплазматический ретикулум; ДИТ - дийодтиронин; Тг - Тиреоглобулин; Т3 - трийодтиронин, Т4 - тироксин. Йодирование тирозина. Окисленный йод взаимодействует с остатками тирозина в молекуле тиреоглобулина. Эта реакция также катализируется тиреопероксидазой. Образование йодтиронинов. Под действием тиреопероксидазы окисленный йод реагирует с остатками тирозина с образованием монойод-тирозинов (МИТ) и дийодтирозинов (ДИТ). Две молекулы ДИТ конденсируются с образованием йодтиронина Т4, а МИТ и ДИТ - с образованием йодтиронина Т3. Йодтиреоглобулин транспортируется из коллоида в фолликулярную клетку путём эндоцитоза и гидролизуется ферментами лизосом с освобождением Т3 и Т4. В нормальных условиях щитовидная железа сек-ретирует 80-100 мкг Т4 и 5 мкг Т3 в сутки. Ещё 22-25 мкг Т3 образуется в результате дейодирования Т4 в периферических тканях по 5'-углеродному атому. Транспорт и метаболизм йодтиронинов. От половины до двух третей Т3 и Т4 находятся в организме вне щитовидной железы. Большая часть их циркулирует в крови в связанной форме в комплексе с белками: тироксинсвязывающим глобулином (ТСГ) и тироксинсвязывающим преальбумином (ТСПА). ТСГ служит основным транспортным белком йодтиронинов, а также формой их депонирования. Он обладает более высоким сродством к Т3 и Т4 и в нормальных условиях связывает почти всё количество этих гормонов. Только 0,03% Т4 и 0,3% Т3 находятся в крови в свободной форме. Т1/2 Т4 в плазме в 4-5 раз больше, чем Т3. Для Т4 этот период составляет около 7 дней, а для Т3 - 1-1,5 дня. Биологическая активность йодтиронинов обусловлена несвязанной фракцией. Т3 - основная биологически активная форма йодтиронинов; его сродство к рецептору клеток-мишеней в 10 раз выше, чем у Т4. В периферических тканях в результате дейодирования части Т4 по пятому углеродному атому образуется так называемая "реверсивная" форма Т3, которая почти полностью лишена биологической активности. Другие пути метаболизма йодтиронинов включают полное дейодирование, дезаминирование или декарбоксилирование. Йодированные продукты катаболизма йодтиронинов конъюгируют-ся в печени с глюкуроновой или серной кислотами (см. раздел 12), секретируются с жёлчью, в кишечнике вновь всасываются, дейодируются в почках и выделяются с мочой. Регуляция синтеза и секреции йодтиронинов Скорость синтеза и секреции йодтиронинов регулируются гипоталамо-гипофизарной системой по механизму обратной связи (рис. 11-19). Стимулом для повышения секреции тирео-либерина и тиреотропина служит снижение концентрации йодтиронинов в крови. Механизм действия и биологические функции йодтиронинов Клетки-мишени йодтиронинов имеют 2 типа рецепторов к этим гормонам. Основные эффекты йодтиронинов - результат их взаимодействия с высокоспецифичными рецепторами, которые в комплексе с гормонами постоянно находятся в ядре и взаимодействуют с определёнными последовательностями ДНК, участвуя в регуляции экспрессии генов. Другие рецепторы расположены в плазматической мембране клеток, но это не те же самые белки, что в ядре. Они обладают более низким сродством к йодтиронинам и, вероятно, обеспечивают связывание гормонов для удержания их в непосредственной близости к клетке. При физиологической концентрации йодтиронинов их действие проявляется в ускорении белкового синтеза, стимуляции процессов роста и клеточной дифференцировки. В этом отношении йодтиронины - синергисты гормона роста. Кроме того, Т3 ускоряет транскрипцию гена гормона роста. У животных при дефиците Т3 клетки гипофиза теряют способность к синтезу гормона роста. Очень высокие концентрации Т3 тормозят синтез белков и стимулируют катаболические процессы, показателем чего служит отрицательный азотистый баланс. Рис. 11-19. Регуляция синтеза и секреции йодтиронинов. 1 - тиреолиберин стимулирует освобождение ТТГ; 2 ТТГ стимулирует синтез и секрецию йодтиронинов; 3, 4 - йодтиронины тормозят синтез и секрецию ТТГ и тиреолиберина. Метаболические эффекты йодтиронинов относят в основном к энергетическому метаболизму, что проявляется в повышении поглощения клетками кислорода. Этот эффект проявляется во всех органах, кроме мозга, РЭС и гонад. В разных клетках Т3 стимулирует работу Nа+,К+-АТФ-азы, на что затрачивается значительная часть энергии, утилизируемой клеткой. В печени йодтиронины ускоряют гликолиз, синтез холестерола и синтез жёлчных кислот. В печени и жировой ткани Т3 повышает чувствительность клеток к действию адреналина и косвенно стимулирует липолиз в жировой ткани и мобилизацию гликогена в печени. В физиологических концентрациях Т3 увеличивает в мышцах потребление глюкозы, стимулирует синтез белков и увеличение мышечной массы, повышает чувствительность мышечных клеток к действию адреналина. Йодтиронины также участвуют в формировании ответной реакции на охлаждение увеличением теплопродукции, повышая чувствительность симпатической нервной системы к норадренали-ну и стимулируя секрецию норадреналина (см. раздел 6). Заболевания щитовидной железы Гормоны щитовидной железы необходимы для нормального развития человека. Гипотиреоз у новорождённых приводит к развитию кретинизма, который проявляется множественными врождёнными нарушениями и тяжёлой необратимой задержкой умственного развития. Гипотиреоз развивается вследствие недостаточности йодтиронинов. Обычно гипотиреоз связан с недостаточностью функции щитовидной железы, но может возникать и при заболеваниях гипофиза и гипоталамуса. Наиболее тяжёлые формы гипотиреоза, сопровождающиеся слизистым отёком кожи и подкожной клетчатки, обозначают термином "микседема" (от греч. туха - слизь, oedema - отёк). Отёчность обусловлена избыточным накоплением гликозаминогликанов и воды. В подкожной клетчатке накапливается глюкуроновая и в меньшей степени хондроитинсерная кислоты. Избыток гликозаминогликанов вызывает изменения коллоидной структуры межклеточного матрикса, усиливает его гидрофильность и связывает ионы натрия, что приводит к задержке воды. Характерные проявления заболевания: снижение частоты сердечных сокращений, вялость, сонливость, непереносимость холода, сухость кожи. Эти симптомы развиваются вследствие снижения основного обмена, скорости гликолиза, мобилизации гликогена и жиров, потребления глюкозы мышцами, уменьшения мышечной массы и снижения теплопродукции. При возникновении гипотиреоза у детей старшего возраста наблюдают отставание в росте без задержки умственного развития. В настоящее время у взрослых людей частой причиной гипотиреоза является хронический аутоиммунный тиреоидит, приводящий к нарушению синтеза йодтиронинов (зоб Хашимото). Гипотиреоз может быть также результатом недостаточного поступления йода в организм - эндемический зоб. Эндемический зоб (нетоксический зоб) часто встречается у людей, живущих в районах, где содержание йода в воде и почве недостаточно. Если поступление йода в организм снижается (ниже 100 мкг/сут), то уменьшается продукция йодтиронинов, что приводит к усилению секреции ТТГ (из-за ослабления действия йодтиронинов на гипофиз по механизму отрицательной обратной связи), под влиянием которого происходит компенсаторное увеличение размеров щитовидной железы (гиперплазия), но продукция йодтиронинов при этом не увеличивается. Гипертиреоз возникает вследствие повышенной продукции йодтиронинов. Диффузный токсический зоб (базедова болезнь, болезнь Грейвса) - наиболее распространённое заболевание щитовидной железы. При этом заболевании отмечают увеличение размеров щитовидной железы (зоб), повышение концентрации йодтиронинов в 2-5 раз и развитие тиреотоксикоза. Характерные признаки тиреотоксикоза: увеличение основного обмена, учащение сердцебиений, мышечная слабость, снижение массы тела (несмотря на повышенный аппетит) , потливость, повышение температуры тела, тремор и экзофтальм (пучеглазие). Эти симптомы отражают одновременную стимуляцию йодтиронинами как анаболических (рост и дифференцировка тканей), так и катаболических (катаболизм углеводов, ли-пидов и белков) процессов. В большей мере усиливаются процессы катаболизма, о чём свидетельствует отрицательный азотистый баланс. Гипертиреоз может возникать в результате различных причин: развитие опухоли, тиреоидит, избыточное поступление йода и йодсодер-жащих препаратов, аутоиммунные реакции. Болезнь Грейвса возникает в результате образования антител к тиреоидным антигенам. Один из них, иммуноглобулин (IgG), имитирует действие тиреотропина, взаимодействуя с рецепторами тиреотропина на мембране клеток щитовидной железы. Это приводит к диффузному разрастанию щитовидной железы и избыточной неконтролируемой продукции Т3 и Т4, поскольку образование IgG не регулируется по механизму обратной связи. Уровень ТТГ при этом заболевании снижен вследствие подавления функции гипофиза высокими концентрациями йодтиронинов. Гормоны паращитовидных желез. Химическая природа. Биологическая роль. Изме- нения метаболизма при гипо- и гиперпаратиреозе. Гормон паращитовидной железы Паратгормон — вырабатывается скоплениями секреторных клеток в паренхиме железы. Необходим для поддержания концентрации ионов кальция в крови на физиологическом уровне. Снижение уровня ионизированного кальция в крови активирует секрецию паратгормона, который повышает высвобождение кальция из кости за счёт активации остеокластов. Уровень кальция в крови повышается, но кости теряют жёсткость и легко деформируются. Гормон паращитовидной железы приводит к эффектам, противоположным по действию тирокальцитонина, секретируемого С-клетками щитовидной железы. Регуляция деятельности паращитовидных желез осуществляется по принципу обратной связи, регулирующим фактором является уровень, кальция в крови, регулирующим гормоном — паратгормон. Основным стимулом к выбросу в кровоток паратгормона служит снижение концентрации кальция в крови (норма 2,25—2,75 ммоль/л, или 9—11 мг/100 мл). Основная функция паратгомона заключается в поддержании постоянного уровня ионизированного кальция в крови и эту функцию он выполняет, влияя на кости, почки, и посредством витамина D — на кишечник. Как известно, в организме человека содержится около 1 кг кальция, 99% которого локализуется в костях в форме гидроксиапатита. Около 1% кальция организма содержится в мягких тканях и во внеклеточном пространстве, где он принимает участие во всех биохимических процессах. Действие паратгормона на кости. Кость, как известно, состоит из белкового каркаса — матрикса и минералов. Постоянный обмен веществ и структура костной ткани обеспечиваются согласованным действием остеобластов и остеокластов. Остеокласты — клетки, которые участвуют в процессах резорбции, то есть рассасывания костной ткани; действуют только на минерализованную кость и не изменяют матрикс кости. Остеобласты — клетки, участвующие в новообразовании костной ткани и процессах ее минерализации. Действие паратгормона на кость характеризуется двумя фазами. В период ранней фазы происходит увеличение метаболической активности остеокластов, это проявляется в виде выхода кальция из костей и восстановления его уровня во внеклеточной жидкости. В период поздней фазы происходит синтез белка и наблюдаются процессы образования новых клеток, а также повышается синтез лизосомальных и других ферментов, участвующих в процессах резорбции кости. Гиперкальциемия, вызванная паратгормоном, является результатом проявления обеих фаз. Механизм действия паратгормона на костную ткань осуществляется через цАМФ, активирование цАМФ- зависимых протеинкиназ, фосфолипазы С, диацилглицерина, инозитолтрифосфата и ионов Са. Паратгормон связывается с рецепторами, расположенными на мембранах остеокластов и остеобластов, и в клетках отмечается повышение цАМФ. При длительной гиперсекреции паратгормона наблюдается не только деминерализация костной ткани, но и деструкция матрикса. Это сопровождается повышением гидроксипролина в плазме крови и экскреции его с мочой. Действие паратгормона на почки. Паратгормон угнетает реабсорбцию фосфатов, и в некоторой степени натрия и бикарбонатов в проксимальных канальцах почек. Это ведет к фосфатурии и гипофосфатемии. Так же увеличивается реабсорбция кальция в дистальных отделах канальцев, то есть уменьшает выделение кальция наружу. Однако при длительной гиперсекреции паратгормона развивается такая значительная гиперкальциемия, которая, несмотря на повышение реабсорбции кальция, приводит к гиперкальцийурии. Рецепторы к паратгормону выявлены в клубочке, в проксимальных и дистальных канальцах, а также восходящей части петли Генле. На молекулярном уровне паратгормон основное действие на почки осуществляет через образование цАМФ. Однако, помимо цАМФ, вторичными мессенджерами паратгормона в почках являются диацилглицерин, ионы кальция и инозитолтрифосфат. Под влиянием паратгормона в почках стимулируется образование активного метаболита витамина D — 1,25- диоксихолекальциферола, который способствует увеличению всасывания кальция из кишечника, посредством активизации специфического кальцийсвязывающего белка. Т.о., действие паратгормона на всасывание кальция из кишечника может быть не прямым, а косвенным. После взаимодействия витамина D с рецепторами клеток слизистой оболочки тонкого кишечника происходит экспрессия гена, ответственного за синтез кальцийсвязывающего белка, получившего название кальбиндина. Кальбиндины представлены в большом количестве в проксимальном отделе кишечника и в почках. Считается, что эти белки ответственны за транспорт кальция через мембрану клеток кишечника и почек соответственно. Паратгормон уменьшает отложение кальция в хрусталике (при нехватке этого гормона возникает катаракта), оказывает косвенное влияние на все кальцийзависимые ферменты и катализируемые ими реакции, в том числе на реакции, формирующие свертывающую систему крови. Метаболизируется паратгормон в основном в печени и почках, его экскреция через почки не превышает 1 % от введенного в организм гормона. Время биологической полужизни паратгормона составляет 8—20 мин. |