Главная страница
Навигация по странице:

  • Классификация чувствительности капиллярного контроля

  • Магнитоферрозондовый метод

  • Активные методы магнитного контроля.

  • Классификация чувствительности магнитопорошкового контроля

  • Виды и способы намагничивания

  • Метод магнитной памяти металла

  • Конспект лекций по дисциплине введ-направ. Конспект лекций по дисциплине Введение в направление


    Скачать 11.02 Mb.
    НазваниеКонспект лекций по дисциплине Введение в направление
    АнкорКонспект лекций по дисциплине введ-направ.docx
    Дата25.04.2018
    Размер11.02 Mb.
    Формат файлаdocx
    Имя файлаКонспект лекций по дисциплине введ-направ.docx
    ТипКонспект
    #18476
    страница5 из 21
    1   2   3   4   5   6   7   8   9   ...   21

    Капиллярный метод (рисунок 9) подразделяется на две разновидности: цветной и люминесцентный. Основным индикаторным средством здесь служит специальная жидкость с высокой проникающей способностью – пенетрант (от греческого «пенетро» - «проникаю»). При цветном способе пенетрант имеет ярко-алый цвет, а для люминесцентного применяется жидкость, имеющая свойство сиять в ультрафиолетовом облучении.

    капилл

    Рисунок 9. Поиск поверхностных дефектов в металле капиллярным (цветным)

    методом.

    Для поиска неразличимых глазом узких (раскрытием менее 10 мкм) трещин контролируемый участок объекта зачищают от покрытий, очищают от загрязнений, обезжиривают специальным растворителем (рис. 9-а) и обильно покрывают слоем пенетранта (рис. 9-б). После некоторой выдержки (5÷7 минут, для пропитки пенетрантом возможных дефектов) излишки пенетранта тщательно удаляют неворсистой хлопчатобумажной ветошью (рис. 9-в) и при цветном способе покрывают участок другой специальной жидкостью – белым проявителем, представляющим собой взвесь мела или гашеной извести в летучем жидком носителе. По мере высыхания проявитель превращается в белую высокопористую корку, и оставшийся в полости дефекта пенетрант за счет капиллярного эффекта начинает подниматься в проявитель и вследствие хаотичности пор расходиться над дефектом по ширине. В результате красный след на белом фоне над дефектом становится достаточно широк, чтобы быть различимым человеческим глазом (рис. 9-г).

    При люминесцентном способе после удаления излишков пенетранта участок освещают специальным ультрафиолетовым фонарем, и сохранившийся в полостях дефектов пенетрант начинает светиться, показывая оператору эти дефекты.

    Пример выявления капиллярным (цветным) методом трещины в гребном вале теплохода показан на рисунке 10.

    Капиллярный метод также может быть использован в целях течеискания. Для этого одну поверхность стенки объекта покрывают проявителем, а другую (противоположную) – пенетрантом. Если в данной зоне имеется сквозной дефект (течь), пенетрант через некоторое время проникнет сквозь него в проявитель и вызовет на противоположной поверхности различимый след. Основываясь на этом, в 2004 году студентом М.Н. Лычковским и доцентом А.А. Сельским (Красноярский государственный технический университет) было предложено существенно упростить процедуру диагностирования нижних уторных швов нефтепродуктовых резервуаров на предмет течей и переложить ее на плечи владельца резервуара [8, 9]. Для этого следует покрыть уторный шов снаружи равномерным слоем мелового раствора и периодически осматривать побеленный шов на предмет сырых пятен в известковом слое, при необходимости восстанавливая побелку. Здесь пенетрантом выступает сама хранимая жидкость. Это хотя формально и относится к сфере неразрушающего контроля методом проникающих веществ, однако не требует ни высокой квалификации в области диагностики, ни затрат на привлечение специалистов, ни расходов на средства контроля и в то же время позволяет владельцу своевременно обнаружить нарушение герметичности шва и принять меры по ее устранению.


    Рисунок 10. Пример выявления капиллярным методом трещины в гребном вале

    теплохода.

    В России капиллярный метод регламентирован стандартом ГОСТ 18442-80 «Качество продукции. Неразрушающий контроль. Капиллярные методы. Общие требования» [10]. Этот стандарт устанавливает 5 классов чувствительности, характеристики которых приведены в таблице 4.
    Таблица 4. Классификация чувствительности капиллярного контроля.

    Класс чувствительности

    Требования к подготовке поверхности

    Раскрытие выявляемых дефектов, мкм

    Шероховатость, не грубее

    Освещенность, лк, не менее

    I

    Rz 2,5

    2000

    Менее 1

    II

    Rz 20

    От 1 и более

    III

    Rz 40

    1500

    От 10 и более

    IV

    Rz 80

    500

    От 100 и более

    Технологический

    Не обработанная

    Не нормируется


    В разделе 3 приложения 1 приведена «Методика капиллярного (цветного) контроля цапф ковшей, крюков и деталей крюковых подвесок кранов, транспортирующих расплавленный металл», разработанная в ООО НИЦТДЭиС «Регионтехсервис».
    V. МАГНИТНЫЙ КОНТРОЛЬ

    Магнитному виду контроля подвергаются только ферромагнитные материалы. Этот вид составляют следующие методы:

    1. Индукционный.

    2. Магнитоферрозондовый.

    3. Магнитографический.

    4. Магнитопорошковый.

    5. Метод эффекта Холла.

    6. Метод магнитной памяти металла.

    Индукционный метод основан на явлении самоиндукции. Если электрическую катушку, замкнутую на гальванометр или милливольтметр, быстро проносить над металлом, в котором имеется наружный дефект, то над дефектом возникает неоднородность электромагнитного поля в катушке, которая образует слабую электродвижущую силу в ней. Эта ЭДС, индицируемая прибором, и является признаком дефекта. На этом методе на железной дороге строились первые вагоны-дефектоскопы. В настоящее время метод практически не используется, так как обладает слабой чувствительностью, напрямую зависящей от скорости сканирования.

    Методы 1 и 6 – пассивные, а методы 2÷5 – активные, т.е. требуют предварительного намагничивания объекта, при котором над дефектом образуется собственное магнитное поле (поле рассеяния, см. рисунок 11). Поле рассеяния образуется за счет того, что в таких условиях дефект сам по себе превращается в небольшой магнит с полюсами на краях, между которыми возникает пучок магнитных силовых линий, частично выступающий над поверхностью объекта. Эти методы различаются между собой по способу выявления полей рассеяния над дефектами (см. таблицу 5).

    Магнитоферрозондовый метод широко применяется на железной дороге для контроля рельсовых звеньев.

    Магнитографический метод применяется на контроле сварных соединений, но редко, так как требуется весьма сложная аппаратура и обязательное предварительное размагничивание объекта вместе с пленкой.
    магнитный 1

    Рисунок 11. Поле рассеяния над дефектом.
    Таблица 5. Активные методы магнитного контроля.

    Метод

    Краткое описание

    Эскиз

    Магнитоферрозондовый

    Поле рассеяния над дефектом возбуждает ЭДС в датчике – катушке, замкнутой на индикатор

    магнитный 2

    Магнитографический

    Поле рассеяния над дефектом оставляет на магнитной ленте магнитное пятно, которое далее визуализируется в специальном видеомагнитофоне

    магнитный 3

    Магнитопорошковый

    При поливе поверхности магнитопорошковой суспензией поле рассеяния над дефектом стягивает на себя частицы черного магнитного порошка


    магнитный 4


    Метод эффекта Холла

    Поле рассеяния над дефектом вызывает отклонение траектории электрического тока в пластине Холла

    См. рисунки 12 и 13


    Наиболее популярен магнитопорошковый метод, при котором слабораскрытые дефекты визуализируются за счет того, что на них образуются валики черного магнитного порошка, которые в несколько раз шире дефекта и потому различимы глазом. В России магнитопорошковый метод регламентирован стандартом ГОСТ 21105-87 «Контроль неразрушающий. Магнитопорошковый метод» [11].

    Этот стандарт классифицирует чувствительность магнитопорошкового метода по трем уровням, возможности и требования которых приведены в таблице 6.

    Таблица 6. Классификация чувствительности магнитопорошкового контроля.

    Уровень чувствительности

    Требования к подготовке поверхности

    Раскрытие выявляемых дефектов, мкм

    Шероховатость, не грубее

    Освещенность, лк, не менее

    А

    Rz 2,5

    1000

    От 2,5 и более

    Б

    Rz 40

    750

    От 10 и более

    В

    Не обработанная

    500

    От 25 и более


    Существует несколько видов и способов намагничивания деталей и объектов (см. таблицу 7).
    Таблица 7. Виды и способы намагничивания.

    Вид намагничивания

    Способ

    Схема

    Преимущественная ориентация выявляемых дефектов

    Продольное (полюсное)

    Постоянным магнитом



    Поперечные

    Электромагнитом

    полюсное 2

    Соленоидом



    Циркулярное

    Пропусканием тока по детали



    Продольные

    Пропусканием тока по проводу рядом с деталью



    Вдоль провода

    Пропусканием тока по проводу в полости детали



    Продольные

    Комбинированное (пример)

    Пропусканием тока по детали и соленоидом



    Любые



    Объект поливают магнитопорошковой суспензией (взвесь вороненой пыли Fe2O3 в летучем жидком носителе) в процессе намагничивания (способ приложенного поля, СПП) или после него (способ остаточной намагниченности, СОН). СОН применяют только на магнитожестких сталях, таких как инструментальные и подшипниковые, которые долго сохраняют поверхностную намагниченность; в большинстве же случаев применяют СПП.

    На ферромагнитных материалах магнитопорошковый метод предпочтителен по сравнению с капиллярным, так как более оперативен и прост в применении. В разделе 2 приложения 1 приведена «Методика магнитопорошкового контроля цапф ковшей, крюков и деталей крюковых подвесок кранов, транспортирующих расплавленный металл», разработанная в ООО НИЦТДЭиС «Регионтехсервис».

    Метод эффекта Холла нашел применение для контроля стальных канатов. Датчик Холла (пластина Холла, см. рисунок 12-а) представляет собой прямоугольную пластину из полупроводникового материала (например, арсенид галлия).

    рис 1-2

    а) б)

    Рисунок 12. Принцип действия пластины Холла: а – магнитное воздействие

    отсутствует; б – влияние локального магнитного поля.

    В направлении А – В течет постоянный ток I (управляющий ток). Эффект Холла состоит в том, что в случае попадания в пластину локального магнитного поля в ней происходит искривление пути носителей электрических зарядов (т.е. траектории управляющего тока), что вызывает образование разности потенциалов между гранями С и D, то есть возникновение электродвижущей силы Е в цепи индикатора (рисунок 12-б). Исполнительный орган (магнитная головка) средства контроля объектов методом Холла обобщенно представляет собой конструкцию, схематически показанную на рисунке 13. Объект перемещается относительно такой головки, и в случае попадания под нее дефекта на выводах пластины Холла возникает импульс ЭДС, регистрируемый прибором. На фотографиях рис. 14 показаны внешний вид прибора «ИНТРОС МДК-21», построенного на эффекте Холла, и примеры его применения на канатах.

    рис 1-3

    Рисунок 13. Схематическое представление конструкции магнитной головки прибора для контроля изделий методом Холла.

    прибор с головками установка головки на канат

    а) б)

    контроль канатной дороги контроль горизонтального каната в шахте

    в) г)

    контроль вертикального каната в шахте лифта

    д)

    Рисунок 14. а – прибор «ИНТРОС МДК-21» в комплекте; б – установка головки МГ-64 на канат; в – контроль канатной дороги; г – контроль каната в угольной шахте; д – контроль каната в шахте лифта.

    Метод магнитной памяти металла (МПМ) основан на измерении и анализе распределения собственных магнитных полей рассеяния металла, отражающих их структурную и технологическую наследственность. Установлено, что в зонах стального объекта, когда-либо (даже лишь однократно) претерпевавших повышенные механические напряжения (далее - зоны концентрации напряжений, ЗКН), напряженность поля остаточной намагниченности металла Нр меняет свой знак (инверсия: плюс на минус или наоборот) либо обращается в нуль. При контроле методом МПМ вполне достаточно использовать естественную намагниченность, сформировавшуюся в процессе изготовления изделия в магнитном поле Земли, а для элементов механического оборудования постоянная намагниченность обусловлена еще и регулярным влиянием полей электрических установок, входящих в конструкцию объекта (например, электроприводы различных механизмов). Для оборудования, находящегося в эксплуатации, магнитная память проявляется в необратимом изменении намагниченности металла в направлении действия максимальных напряжений от рабочих нагрузок, то есть степень опасности участка отображается не собственно значением напряженности поля Нр, а крутизной ее перепада в ЗКН (см. рисунок 15).

    рис 1-2

    Рисунок 15. Инверсия знака при остаточной напряженности магнитного поля

    Нр в зоне, претерпевшей концентрацию механических напряжений.

    Этот метод регламентируется стандартом ГОСТ Р 52005-2003 «Контроль неразрушающий. Метод магнитной памяти металла. Общие требования» [12] и находит применение, например, на объектах котлонадзора [13]. В настоящее время ведутся успешные разработки в части его применения и на стальных канатах, так как он имеет ряд преимуществ перед методом эффекта Холла в части портативности средств контроля и надежности выявления опасных участков. На рисунке 16 приведены фотографии средств контроля методом МПМ и пример его проведения.

    датчик № 5 imgp0324

    а) б) в)

    Рисунок 16. а – внешний вид прибора ИКН-4М-16; б – исполнительный элемент датчика; в – контроль каната методом МПМ.
    VI. ЭЛЕКТРОМАГНИТНЫЙ (ВИХРЕТОКОВЫЙ) КОНТРОЛЬ

    Электромагнитный вид контроля содержит только два метода: вихретоковая дефектоскопия и вихретоковая толщинометрия. Оба эти метода основаны на вихревых токах (токах Фуко), создаваемых в электропроводных материалах, и поэтому в отличие от магнитных методов могут применяться на любых твердых металлах.

    С помощью вихретоковой дефектоскопии можно выявлять наружные и подповерхностные (не глубже 2 мм) дефекты раскрытием от 1 мкм и более. Метод действует таким образом (см. рисунок 17).
    втк 1втк 2

    а) б)

    Рисунок 17. Принцип действия вихретокового метода дефектоскопии.

    Датчик представляет собой катушку с переменным (гармоническим) током определенной амплитуды. Создаваемое катушкой электромагнитное поле образует в металле поле вихревых токов Фуко, которое однородно, если под катушкой нет дефектов (рисунок 17-а). Это поле ответно возбуждает в катушке вторичную электродвижущую силу, в определенной степени изменяющую амплитуду тока. При калибровке прибора на бездефектном образце итоговый уровень амплитуды принимают за базовый, балансируя индикатор в нулевое значение.

    Если далее при контроле объекта в процессе сканирования катушкой его поверхности под датчиком оказывается дефект, то он искажает поле вихревых токов, изменяя степень его влияния на амплитуду тока в катушке. Это вызывает разбаланс индикатора, что и служит признаком дефекта (см. рисунок 17-б).

    Конструктивно различают проходные и накладные вихретоковые датчики (см. рисунок 18). Проходными контролируют внутренние поверхности полостей в объектах, накладными – наружные поверхности.


    Рисунок 18. Разновидности вихретоковых датчиков.

    Катушка накладного датчика обычно намотана на ферритовый стержень. Если выпуск рабочего конца этого стержня подогнать под профиль контролируемой поверхности, то этим методом очень удобно контролировать галтельные переходы в точеных изделиях, резьбовые канавки и т.п. При контроле треугольной резьбы на предмет канавочных трещин этот метод не имеет себе равных по достоверности и надежности. Метод очень хорошо предрасположен к портативности аппаратуры: современные вихретоковые индикаторы трещин имеют размер шариковой авторучки.

    Несмотря на то, что в России вихретоковый метод дефектоскопии не подкреплен стандартом на общие требования, он широко применяется в металлургии для контроля тонкостенных труб, прутков малого диаметра и проволоки.
    1   2   3   4   5   6   7   8   9   ...   21


    написать администратору сайта