Нейрохирургия. краткая история развития отечественной неврологии и нейрохирургии
Скачать 13.31 Mb.
|
Рис. 1.21. Основные виды синапсов. А - а - электрический синапс; б - шипиковый синапс, содержащий электронно - плотные везикулы; в - «en passant» - синапс, или синаптическая «почка»; г - тормозной синапс, расположенный на начальной части аксона (содержит эллипсоидные везикулы); д - дендритный шипик; е - шипиковый синапс; ж - тормозный синапс; з - аксо - аксональный синапс; и - реципрокный синапс; к - возбуждающий синапс. Б - Нетипичные синапсы: 1 - аксо - аксональный синапс. Окончание одного аксона может регулировать активность другого; 2 - дендродендрический синапс; 3 - сомасоматический синапс Электрические синапсы наиболее часто образуются в эмбриональной стадии развития, у взрослого их количество уменьшается. Однако и во взрослом организме значимость электрических синапсов сохраняется для клеток глии и амакринных клеток сетчатки глаза; электрические синапсы можно обнаружить в стволе головного мозга, особенно в нижних оливах, в сетчатке глаза, вестибулярных корешках. Деполяризация пресинаптической мембраны приводит к образованию разности потенциалов с недеполяризованной постсинаптической мембраной. В результате через каналы, образованные коннексонами, начинается движение положительных ионов по градиенту разности потенциалов в постсинаптическую клетку или движение анионов в обратном направлении. При достижении на постсинаптической мембране Рис. 1.22. Ассоциативный нейрон со множественными синаптическими связями. 1 - аксонный холмик, переходящий в аксон; 2 - миелиновая оболочка; 3 - аксодендритический синапс; 4 - ядро; 5 - дендрит; 6 - аксосоматический синапс Рис. 1.23. Строение электрического синапса. А - Щелевой контакт между участками мембран соседних клеток. Б - Коннексоны мембран соседних клеток образуют межнейрональный «канал». 1 - протеиновый комплекс; 2 - ионный канал. 3 - канал; 4 - коннексон клетки 1; 5 - каждые шесть субъединиц; 6 - коннексон клетки 2 суммарной деполяризации пороговой величины возникает потенциал действия. Важно отметить, что в электрическом синапсе ионные токи возникают с минимальной временной задержкой, составляющей 10 -5 с, что объясняет высокую синхронизацию ответа даже очень большого числа клеток, соединенных щелевым контактом. Проведение тока через электрический синапс также возможно в обоих направлениях (в противоположность химическому синапсу). Функциональное состояние электрических синапсов регулируется ионами Са 2+ и уровнем мембранного потенциала клеток, что создает условия для влияния на распространение возбуждения вплоть до его прекращения. К особенностям деятельности электрических синапсов следует отнести невозможность прямого переноса возбуждения на отдаленные клетки, так как с возбужденной клеткой непосредственно связаны лишь немногие другие; уровень возбуждения в пресинаптической и постсинаптической клетках одинаков; затормозить распространение возбуждения невозможно, в связи с этим головной мозг новорожденных и детей раннего возраста, содержащий значительно больше электрических синапсов, чем мозг взрослого, оказывается значительно более возбудимым для электрических процессов: быстро распространяющееся электрическое возбуждение не подвергается тормозной коррекции и почти мгновенно становится генерализованным, что объясняет его особую уязвимость и подверженность развитию пароксизмальной активности. Следует отметить, что при некоторых формах демиелинизирующих полиневропатий аксоны, входящие в состав одного нервного ствола, начинают тесно соприкасаться друг с другом, формируя патологические зоны (эфапсы), внутри которых становится возможным «перепрыгивание» потенциала действия с одного аксона на другой. В результате возможно появление симптоматики, отражающей поступление «псевдоинформации» в головной мозг, - ощущение боли без раздражения периферических болевых рецепторов и т.д. Химический синапс также передает электрический сигнал от пресинаптической к постсинаптической клетке, но в нем ионные каналы на постсинаптической мембране открываются или закрываются при помощи химических веществ - переносчиков (медиаторов, нейротрансмиттеров), высвобождающихся из пресинаптической мембраны (рис. 1.24). Изменение возможности проведения определенных ионов через постсинаптическую мембрану является основой функционирования химических синапсов. Ионные токи изменяют потенциал постсинаптической мембраны, т.е. вызывают развитие постсинаптического потенциала. В зависимости от того, проводимость каких ионов изменяется при действии нейротрансмиттера, его эффект может быть тормозящим (гиперполяризация постсинаптической мембраны вследствие дополнительного выходящего тока ионов К+ или входящего тока ионов С1 - ) или возбуждающим (деполяризация постсинаптической мембраны при дополнительном входящем токе ионов Ca 2+ или Na + ). В синапсе (рис. 1.25) выделяют пресинаптический отросток, содержащий пресинаптические пузырьки (везикулы), и постсинаптическую часть (дендрит, тело клетки или аксон). В пресинаптическом нервном окончании в везикулах аккумулируются нейротрансмиттеры. Синаптические везикулы фиксируются в основном на цитоскелете посредством белков синапсина, локализованного на цитоплазматической поверхности каждой везикулы, и спектрина, расположенного на волокнах F - актина цитоскелета (рис. 1.26). Меньшая часть везикул связана с преси - наптической мембраной посредством белка везикулы синаптобревина и белка пресинаптической мембраны синтаксина. Одна везикула содержит 6000 - 8000 молекул трансмиттера, что составляет 1 квант трансмиттера, т.е. минимальное количество, освобождающееся в синаптическую щель. Когда серия потенциалов действия достигает нервного окончания (пресинаптической мембраны), ионы Са 2+ устремляются внутрь клетки. На связанных с пресинаптической мембраной везикулах ионы Са 2+ связываются с белком везикул синаптотагми - Рис. 1.24. Основные этапы передачи через химический синапс: 1 - потенциал действия достигает пресинаптического окончания; 2 - деполяризация пресинаптической мембраны приводит к открытию потенциалзависимых Са 2+ - каналов; 3 - ионы Са 2+ опосредуют слияние везикул с пресинаптической мембраной; 4 - молекулы медиатора высвобождаются в синаптическую щель путем экзоцитоза; 5 - молекулы медиатора связываются с постсинаптическими рецепторами, активируя ионные каналы; 6 - происходит изменение проводимости мембраны для ионов и в зависимости от свойств медиатора возникает возбуждающий (деполяризация) или тормозной (гиперполяизация) потенциал постсинаптической мембраны; 7 - ток ионов распространяется по постсинаптической мембране; 8 - медиаторные молекулы возвращаются в пресинаптическое окончание путем обратного захвата или 9 - диффундируют во внеклеточную жидкость ном, что вызывает раскрытие мембраны везикул (см. рис. 1.26). Параллельно с этим комплекс полипептида синаптофизина сливается с неидентифицированными белками пресинаптической мембраны, что приводит к формированию поры, через которую осуществляется регулируемый экзоцитоз, т.е. секреция нейротрансмиттера в синаптическую щель. Специальные протеины везикул (rab3A) регулируют этот процесс. Ионы Са 2+ в пресинаптическом окончании активируют Са 2+ - кальмодулинзависимую протеинкиназу II - фермент, фосфорилирующий синапсин на пресинаптической мембране. Вследствие этого нагруженные трансмиттером везикулы могут освободиться от цитоскелета и переместиться на пресинаптическую мембрану для осуществления дальнейшего цикла. Ширина синаптической щели составляет около 20 - 50 нм. В нее выбрасываются молекулы нейротрансмиттера, локальная концентрация которых сразу после выброса достаточно высока и находится в миллимолярном диапазоне. Молекулы нейротрансмиттера диффундируют к постсинаптической мембране примерно за 0,1 мс. В постсинаптической мембране выделяют субсинаптическую зону - область непосредственного контакта пресинаптической и постсинаптической мембран, называемую также активной зоной синапса. В нее встроены протеины, образующие ионные каналы. В состоянии покоя эти каналы открываются редко. При попадании молекул нейротрансмиттера на постсинаптическую мембрану они взаимодействуют с белками ионных каналов (синаптическими рецепторами), изменяя их конформацию и приводя к значительно более частому открытию ионных каналов. Те рецепторы, ионные каналы которых открываются при непосредственном контакте с лигандом (нейротрансмиттером), называются ионотропными. Рецепторы, в которых откры - Рис. 1.25. Ультраструктура аксодендритического синапса. 1 - аксон; 2 - дендрит; 3 - митохондрии; 4 - синаптические пузырьки; 5 - пресинаптическая мембрана; 6 - постсинаптическая мембрана; 7 - синаптическая щель тие ионных каналов связано с подключением других химических процессов, называются метаботропными (рис. 1.27). Во многих синапсах рецепторы для нейротрансмиттера находятся не только на постсинаптической, но и на пресинаптической мембране(ауторецепторы). При взаимодействии нейротрансмиттера с ауторецепторами пресинаптической мембраны его высвобождение усиливается или ослабляется (положительная или отрицательная обратная связь) в зависимости от типа синапса. На функциональное состояние ауторецепторов также влияет концентрация ионов Са 2+ Взаимодействуя с постсинаптическим рецептором, нейротрансмиттер открывает неспецифические ионные каналы в постсинаптической Рис. 1.26. Докирование везикулы у пресинаптической мембраны. А - Синаптическая везикула присоединяется к элементу цитоскелета с помощью молекулы синапсина. Комплекс докирования выделен четырехугольником: 1 - самкиназа 2; 2 - синапсис 1; 3 - фодрин; 4 - переносчик медиатора; 5 - синаптофизин; 6 - комплекс докирования Б - Увеличенная схема комплекса докирования: 7 - синаптобревин; 8 - синаптотагмин; 9 - rab3A; 10 - NSF; 11 - синаптофизин; 12 - SNAP; 13 - синтаксин; 14 - нейрексин; 15 - физофиллин; 16 - α -SNAP; 17 - Са 2+ ; 18 - n- sec1. СаМ - киназа -2 - кальмодулинзависимая протеинкиназа 2; n -secl - секреторный белок; NSF - N- этилмалеимид - чувствительный белок слияния; гаb3ЗА - ГТФаза из семейства ras; SNAP - белок пресинаптической мембраны мембране. Возбуждающий постсинаптический потенциал возникает вследствие повышения способности ионных каналов проводить одновалентные катионы в зависимости от их электрохимических градиентов. Так, потенциал постсинаптической мембраны находится в диапазоне между - 60 и - 80 мВ. Равновесный потенциал для ионов Na+ составляет +55 мВ, что объясняет сильную движущую силу для ионов Na+ внутрь клетки. Равновесный потенциал для ионов К+ составляет примерно - 90 мВ, т.е. сохраняется незначительный ток ионов К+, направленный из внутриклеточной среды во внеклеточную. Работа ионных каналов ведет к деполяризации постсинаптической мембраны, которая называется возбуждающим постсинаптическим потенциалом. Так как ионные токи зависят от разности равновесного потенциала и потенциала мембраны, то при сниженном потенциале покоя мембраны ток ионов Na + ослабевает, а ток ионов К + нарастает, что ведет к уменьшению амплитуды возбуждающего постсинаптического потенциала. Токи Na + и К + , участвующие в возникновении возбуждающего постсинаптичес - Рис. 1.27. Схема строения рецептора. А - Метаботропного. Б - Ионотропного: 1 - нейромодуляторы или медикаменты; 2 - рецепторы с различными участками связывания (гетероцептор); 3 - нейромодуляция; 4 - вторичный мессенджер; 5 - ауторецептор; 6 - обратная связь; 7 - встраивание мембраны везикулы; 8 - нейромодуляторы; 9 - трансмиттер; 10 - нейромодуляция; 11 - трансмиттер катализирует реакции G - белков; 12 - трансмиттер открывает ионный канал кого потенциала, ведут себя иначе, чем при генерации потенциала действия, так как в механизме постсинаптической деполяризации принимают участие другие ионные каналы с иными свойствами. Если при генерации потенциала действия активируются потенциалуправляемые ионные каналы, а при нарастании деполяризации открываются и другие каналы, в результате чего процесс деполяризации усиливает сам себя, то проводимость трансмиттеруправляемых (лигандуправляемых) каналов зависит только от количества молекул трансмиттера, связавшихся с рецепторами, т.е. от количества открытых ионных каналов. Амплитуда возбуждающего постсинаптического потенциала составляет от 100 мкВ до 10 мВ, длительность потенциала находится в диапазоне от 4 до 100 мс в зависимости от вида синапса. Локально образовавшийся в зоне синапса возбуждающий постсинаптический потенциал пассивно распространяется по всей постсинаптической мембране клетки. При одновременном возбуждении большого числа синапсов возникает явление суммации постсинаптического потенциала, проявляющееся резким повышением его амплитуды, вследствие чего может деполяризовываться мембрана всей постсинаптической клетки. Если величина деполяризации достигает порогового значения (более 10 мВ), то начинается генерация потенциала действия, который проводится по аксону постсинаптического нейрона. От начала возбуждающего постсинаптического потенциала до образования потенциала действия проходит около 0,3 мс, т.е. при массивном высвобождении нейротрансмиттера постсинаптический потенциал может появиться уже через 0,5 -0 ,6 мс с момента прихода в пресинаптическую область потенциала действия (так называемая синаптическая задержка). К постсинаптическому рецепторному белку могут иметь высокое сродство другие соединения. В зависимости от того, к какому (по отношению к нейротрансмиттеру) эффекту приводит их связывание с рецептором, выделяют агонисты (однонаправленное действие с нейротрансмиттером) и антагонисты (действие которых препятствует эффектам нейротрансмиттера). Существуют рецепторные белки, не являющиеся ионными каналами. При связывании с ними молекул нейротрансмиттера возникает каскад химических реакций, в результате которых соседние ионные каналы открываются при помощи вторичных мессенджеров - метаботропные рецепторы. Важную роль в их функционировании играет G - белок. Синаптическая передача, в которой используется метаботропная рецепция, очень медленная, время передачи импульса составляет около 100 мс. К синапсам этого типа относятся постганглионарные рецепторы, рецепторы парасимпатической нервной системы, ауторецепторы. Примером является холинергический синапс мускаринового типа, в котором зона связывания нейротрансмиттера и ионный канал локализуются не в самом трансмембранном белке, метаботропные рецепторы связаны непосредственно с G - белком. При связывании трансмиттера с рецептором G- белок, имеющий три субъединицы, образует с рецептором комплекс. ГДФ, связанный с G - белком, заменяется на ГТФ, при этом G - белок активизируется и приобретает способность открывать калиевый ионный канал, т.е. гиперполяризировать постсинаптическую мембрану (см. рис. 1.27). Вторичные мессенджеры могут открывать или закрывать ионные каналы. Так, ионные каналы могут открываться при помощи цАМФ/IР 3 или фосфорилирования протеинкиназы С. Этот процесс также проходит с помощью G - белка, который активирует фосфолипазу С, что ведет к образованию инозитолтрифосфата (IP 3 ). Дополнительно увеличивается образование диацилглицерола (ДАГ) и протеинкиназы С (ПКС) (рис. 1.28). Каждая нервная клетка имеет на своей поверхности множество синаптических окончаний, одни из которых возбуждающие, другие - тор - Рис. 1.28. Роль вторичных мессенджеров инозитолтрифосфата (IP 3 ) (А) и диацилглицерола (ДАГ) (Б) в работе метаботропного рецептора. При связывании медиатора с рецептором (Р) происходит изменение конформации G - белка с последующей активацией фосфолипазы С (ФЛС). Активированная ФЛС расщепляет фосфатидилинозитолтрифосфат (PIP 2 ) на ДАГ и IP 3 . ДАГ остается во внутреннем слое клеточной мембраны, a IP 3 диффундирует в цитозоль в качестве вторичного посредника. ДАГ встроен во внутренний слой мембраны, где он взаимодействует с протеинкиназой С (ПКС) в присутствии фосфатидилсерина (ФС) мозные. Если параллельно активируются соседние возбуждающие и тормозные синапсы, возникающие токи накладываются друг на друга, в результате возникает постсинаптический потенциал с амплитудой меньшей, чем раздельно его возбуждающая и тормозная составляющие. При этом существенна гиперполяризация мембраны вследствие повышения ее проводимости для ионов К + и С1 - Таким образом, возбуждающий постсинаптический потенциал генерируется благодаря повышению проницаемости для ионов Na+ и входящему току ионов Na+, a тормозной постсинаптический потенциал генерируется вследствие выходящего тока ионов К + или входящего тока ионов С1 - . Понижение проводимости для ионов К + должно деполяризовать мембрану клетки. Синапсы, в работе которых деполяризация вызывается уменьшением проводимости для ионов К + , локализуются в ганглиях вегетативной (автономной) нервной системы Синаптический перенос должен быть быстро завершен, чтобы синапс был готов для нового переноса, иначе ответ не возникал бы под влиянием вновь поступающих сигналов, наблюдался бы блок деполяризации. Важным механизмом регуляции является быстрое снижение чувствительности постсинаптического рецептора (десенситизация), которое наступает при еще сохраняющихся молекулах нейротрансмиттера. Несмотря на непрерывное связывание нейротрансмиттера с рецептором, конформация каналообразующего белка меняется, ионный канал становится непроницаемым для ионов и синаптический ток прекращается. У многих синапсов десенситизация рецептора может быть длительной (до нескольких минут), пока не произойдут реконфигурация и реактивация канала. Другими путями прекращения действия трансмиттера, позволяющими избежать длительной десенситизации рецептора, являются быстрое химическое расщепление трансмиттера на неактивные компоненты или его удаление из синаптической щели путем высокоселективного обратного захвата пресинаптическим окончанием. Характер инактивирующего механизма зависит от типа синапса. Так, ацетилхолин очень быстро гидролизуется ацетилхолинэстеразой на ацетат и холин. В ЦНС возбуждающие глутаматергические синапсы плотно покрыты отростками астроцитов, которые активно захватывают нейротрансмиттер из синаптической щели и метаболизируют его. 1.7. Нейротрансмиттеры и нейромодуляторы Нейротрансмиттеры передают сигнал в синапсах между нейронами или между нейронами и исполнительными органами (мышечные, железистые клетки). Нейромодуляторы пресинаптически влияют на количество высвобождаемого нейротрансмиттера или его обратный захват нейроном. Помимо этого, нейромодуляторы постсинаптически регулируют чувствительность рецепторов. Таким образом, нейромодуляторы способны регулировать уровень возбудимости в синапсах и изменять эффект нейротрансмиттеров. Нейротрансмиттеры и нейромодуляторы вместе образуют группу нейроактивных субстанций. Многие нейроны являются объектом воздействия нескольких нейроактивных субстанций, но при стимуляции высвобождают только один трансмиттер. Один и тот же нейротрансмиттер в зависимости от типа постсинаптического рецептора может давать возбуждающий или тормозящий эффект. Некоторые нейротрансмиттеры (например, дофамин) могут функционировать и как нейромодуляторы. В нейрофункциональную систему обычно вовлекается несколько нейроактивных субстанций, при этом одна нейроактивная субстанция способна влиять на несколько нейрофункциональных систем. Катехоламинергические нейроны Катехоламинергические нейроны содержат в перикарии и отростках такие нейротрансмиттеры, как дофамин, норадреналин или адреналин, которые синтезируются из аминокислоты тирозина. В мозге взрослого человека дофаминергические, норадренергические и адренергические нейроны по локализации соответствуют меланинсодержащим нейронам. Норадренергические и дофаминергические клетки обозначаются номерами от А1 до А15, а адренергические - от С1 до С3, порядковые номера присвоены в возрастающем порядке, соответственно расположению в стволе мозга от нижних отделов к верхним. Дофаминергические нейроны Дофаминсинтезирующие клетки (А8 - А15) располагаются в среднем, промежуточном и конечном мозге (рис. 1.29). Наибольшая группа дофаминергических клеток - компактная часть черной субстанции (А9). Их аксоны формируют восходящий путь, проходящий через латеральную часть гипоталамуса и внутреннюю капсулу, нигростриарные пучки воло - |