Главная страница

ТВ. и МС.( ЧТЮ) МЕТОДИЧКА 1,2 раздел. кубанский государственный аграрный университет


Скачать 0.88 Mb.
Названиекубанский государственный аграрный университет
АнкорТВ. и МС.( ЧТЮ) МЕТОДИЧКА 1,2 раздел.docx
Дата27.09.2017
Размер0.88 Mb.
Формат файлаdocx
Имя файлаТВ. и МС.( ЧТЮ) МЕТОДИЧКА 1,2 раздел.docx
ТипДокументы
#9017
страница8 из 15
1   ...   4   5   6   7   8   9   10   11   ...   15

Таблица 8 - Распределение семей по величине месячного дохода


на одного члена семьи


Группы семей по месячному доходу на члена семьи, тыс. руб.

До 6,0

6,0-8,0

8,0-10,0

10,0-12,0

Свыше

12,0

Число семей

23

36

44

17

10


С доверительной вероятностью 0,95 определить границы, в которых будет находиться средний месячный доход на одного члена семьи по району, а также доля семей с доходами менее 8,0 тыс. руб. на одного члена семьи.

11 В фирме проведен выборочный опрос 10% работников по вопросам изменения условий труда. Из 90 работников основного производства за изменение условий труда высказалось 65 человек, из 30 работников вспомогательного производства – 20, а из 25 работников, занятых управлением фирмой – 21. С доверительной вероятностью 0,95 определить границы, в которых будет находиться доля работников фирмы, поддерживающих изменение условий труда.

12 Для определения влияния микроэлементов на результаты откорма свиней проведен опыт на 8 группах животных. Рационы отличаются набором и дозами микроэлементов.

Таблиц 9 - Результаты откорма свиней в опыте





Рацион

Поголовье свиней, гол.

Среднесуточный прирост живой массы, г

Среднее квадратическое отклонение, г

1

90

500

40

2

75

575

45

3

100

610

54

4

50

450

52

5

70

590

65

6

60

650

70

7

110

490

48

8

80

540

62


С доверительной вероятностью 0,95 определить границы, в которых

будет находиться среднесуточный прирост свиней по каждому рациону и по опыту в целом.

13 Проведен социологический опрос 500 избирателей по вопросам предстоящих выборов в региональные органы власти. Из опрошенных 22 % избирателей готовы поддержать кандидата А, а 36 % - кандидата Б. а) Определить 95 % доверительные интервалы для доли избирателей, которые отдадут свои голоса за кандидатов А и Б. б) Как изменится доверительный интервал для кандидата А, если предположить, что в выборах примут участие по первому варианту прогноза 30% избирателей, а по второму – 60%.


  1. проверка статистических гипотез


Статистической гипотезой называется всякое предположение о генеральной совокупности, проверяемое по выборке. Статистические гипотезы делятся на:

параметрические – сформулированные относительно параметров (среднего значения, доли, дисперсии и др.) распределения известного вида;

непараметрические – сформулированные относительно вида распределения (например, оценка по выборке нормальности генеральной совокупности).

Выдвигаемая гипотеза называется основной или нулевой (Н0). Гипотеза, противоположная нулевой, называется конкурирующей или альтернативной (Н1).

Так как проверка статистических гипотез осуществляется по выборочным данным, то возникает возможность принятия ошибочных решений. Различают ошибки первого и второго рода.

Ошибка первого рода заключается в том, что будет отвергнута правильная гипотеза, т.е. когда в действительности верна Н0 гипотеза, а в результате проверки она была отвергнута и принята гипотеза Н1. Вероятность ошибки первого рода называется уровнем значимости и обозначается .

. (13.1)

Ошибка второго рода состоит в том, что будет принята неправильная гипотеза, т.е. в действительности верна некоторая альтернативная гипотеза, а по выборочным данным была принята неверная гипотеза Н0. Вероятность ошибка второго рода обозначается .

. (13.2)

Существует правильное решение двух видов:

и . (13.3)

Статистическим критерием (К) называют случайную величину, с помощью которой приимают решение о принятии или отклонений нулевой гипотезы.

Проверка статистических гипотез обычно осуществляется в определенной последовательности.

1. Располагая выборочными данными, формулируют нулевую и конкурирующую гипотезы.

2. Задают уровень значимости (обычно принимают =0,1; 0,01;

3. Выбирают критерий К, по которому будет проверяться выдвинутая гипотеза. Обычно используют следующие распределения критериев:

u – нормальное распределение:
распределение Пирсона (xu – квадрат);

t – распределение Стьюдента;

F – распределение Фишера - Снедекора.

4. На основании выборочных данных определяют фактически наблюдаемое значение критерия Кн.

5. В зависимости от вида альтернативной гипотезы находят, по соответствующей таблице, критические значения критерия для двусторонней или односторонней области (или ). Если фактически наблюдаемые значения критерия попадают в критическую область, то нулевая гипотеза отвергается. В противном случае принимается нулевая гипотеза и считается, что она не противоречит выборочным данным (при этом существует возможность ошибки с вероятностью равной ).

1 Имеется распределение сельскохозяйственных предприятий Краснодарского края по урожайности озимой пшеницы. Требуется проверить нулевую гипотезу, что совокупность предприятий по урожайности озимой пшеницы распределяется по нормальному закону. Уровень значимости принять равным 0,05.

Таблица 10 – Распределение предприятий по урожайности озимой

пшеницы

Группы хозяйств по урожайности , ц/га

До 30

30-40

40-50

50-60

60-70

Свыше 70

Всего

Число хозяйств

6

8

14

17

10

5

60

2 Выборочным методом изучались цены на картофель на продовольственных рынках города. Получено следующее распределение продавцов по уровню цен.

Таблица 11 – Распределение продавцов по цене на картофель

Группы продавцов по цене за 1 кг, руб.

До 15

15-18

18-21

21-24

Свыше

24

Итого

Число продавцов

6

12

18

14

7

57


При уровне значимости 0,05 проверить нулевую гипотезу, что цена на картофель на продовольственных рынках города распределяется по нормальному закону.

3 Сельскохозяйственные предприятия области по урожайности озимой пшеницы распределяются по нормальному закону с известным средним квадратическим отклонением ц/га и генеральной средней урожайностью ц/га. Из генеральной совокупности извлечена выборка 50 хозяйств, по которой определена выборочная средняя урожайность ц/га.

При уровне значимости проверить нулевую гипотезу, что:

а)

б)

в)

4 Производитель печенья утверждает, что вес одной пачки составляет 200 г. Выборочное взвешивание 10 пачек дало следующие результаты: 198; 197; 199; 200; 197; 201; 199; 195; 197; 200. При уровне значимости проверить гипотезу, что средний вес пачки печенья действительно составляет 200 г.

5 Сливочное масло фасуется в пачки средним весом 170 г и средним квадратическим отклонением 3 г. Случайная выборка 20 пачек масла показала, что средний вес одной пачки равен 170,3 г. Проверить статистическую гипотезу при уровне значимости 0,05 о соответствии веса случайно взятой пачки масла, установленному весу.

6 Две фирмы производят однотипный товар. Утверждается, что 90% товаров первой фирмы реализуется повышенного качества, а второй фирмы 80 %. При выборочной проверке оказалось, что из 80 единиц товара первой фирмы повышенного качества 75, а из 60 единиц товара второй фирмы оказалось 45 единиц повышенного качества. При уровне значимости проверить гипотезы: а) о соответствии выборочных долей продукции высшего качества заявленной доле; б) о значимости различий в доле продукции высшего качества двух фирм.

7 Провести две случайные выборки по одному из показателей приложения 4, объемами n1 и n2. Проверить нулевую гипотезу о равенстве выборочных средних значений, при уровне значимости 0,05 (предполагается, что дисперсии неизвестны и одинаковы): а) n1 = n2 =20; б) n1 = 20; n2 =15.

8 Проводилось испытание 8 сортов озимой пшеницы. Каждый сорт высевался на 6 делянках одинаковой площади. При 5% уровне значимости проверить гипотезу о существенности различий в средней урожайности двух сортов озимой пшеницы (номера сортов даются студенту преподавателем).

Таблица 12 - Урожайность озимой пшеницы, ц/га


Повторение

Сорт

1

2

3

4

5

6

7

8

I

45

54

60

49

63

44

55

60

II

44

51

62

52

61

40

53

55

III

46

56

61

49

62

41

51

53

IV

44

52

56

48

66

43

58

57

V

47

54

61

47

62

45

54

54

VI

45

52

59

50

64

41

53

56


9 Произведено выборочное обследование 10% приусадебных участков восьми районов случайным бесповторным способом. Получены следующие результаты об урожайности овощей.
Таблица 13 – Урожайность овощей в хозяйствах населения


Район

Урожайность с 1 га, ц

Среднее квадратическое отклонение, ц/га

Доля овощей в площади участка, %

Число обследованных участков

1

215

30

30

70

2

246

35

35

80

3

305

32

40

75

4

220

24

50

90

5

364

36

38

60

6

280

23

65

70

7

340

40

45

90

8

316

36

53

80


При уровне значимости 0,05 по двум районам проверить гипотезы о равенстве: дисперсий, средних выборочных урожайностей, долей посевов овощей в площади приусадебных участков.
10 При уровне значимости 0,05 проверить гипотезу о равенстве успеваемости студентов по теории вероятностей и математике.
Таблица 14 – Оценки студентов на экзаменах

Номер студента

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Теория вероятностей

4

5

3

4

5

3

5

2

4

4

3

2

4

4

Математика

3

5

2

3

4

3

5

2

4

3

4

3

4

3

1   ...   4   5   6   7   8   9   10   11   ...   15


написать администратору сайта