Курсовая по пастеризации молока. Курсовой проект_ОБРАЗЕЦ_2022_АУвТС_на печать. Курсовой проект по дисциплине Проектная деятельность на тему Автоматизированная система регулирования температурной депрессии на входе в аппарат
Скачать 1.28 Mb.
|
3 Обоснование необходимости регулирования температурыЭффективность пастеризации молока объясняется использованием охлажденной температуры и длительности выдержки сырья. В данном случае молоко охлаждается до такой температуры, с которой потом продукт транспортируют в упаковочные установки. Регулирование температурной депрессии важно по двум основным причинам: для соблюдения правильного технологического процесса и для выполнения техники безопасности производства. Для достижения цели управления процессом следует регулировать температурную депрессию. Нарушения температурного режима негативно сказываются на качестве получаемой продукции. Это может привести к испорченности продукта, а также оборудования. Опасным такой продукт может стать, если в молоке — сырье изначально превышено число посторонних микроорганизмов и неправильно подобраны режимы охладительной обработки, если в процессе производства нарушены правила эксплуатации пастеризационно-охладительного и другого оборудования. После пастеризации продукт охлаждают. Для грамотной настройки оборудования важно учитывать время года и конкретные условия. Обычно требуется, чтобы температура молока была ниже 8 °C. Добиться такого показателя позволяет рассол или артезианская, водопроводная, ледяная вода. Выбор режимов пастеризации предопределяется технологическими условиями и свойствами продукта. При содержании в продукте компонентов, отличающихся низкой термоустойчивостью, следует применять длительную пастеризацию и охлаждение. Процесс длительной пастеризации хотя и обеспечивает надежное уничтожение патогенных микробов и наименьшее изменение физико-химических свойств молока, однако требует больших затрат, связанных с использованием малопроизводительного оборудования. После пастеризации и охлаждения молоко и сливки должны находиться при температуре 0…+8 °C, причем хранение допускается не более 36 ч после завершения обработки. Важно, чтобы используемые для хранения помещения и камеры были хорошо вентилируемыми и защищенными от света. Поэтому за регулирование температуры отвечают датчики. С их помощью происходит измерение температурной депрессии в системах автоматического контроля и регулировка технологических процессов. 4 Физическая величинаТемпература (от лат. Temperatura - надлежащее смешение, нормальное состояние) - скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия. В Международной системе единиц (СИ) термодинамическая температура входит в состав семи основных единиц и выражается в кельвинах. В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряется в градусах Цельсия. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды. Существует несколько различных единиц измерения температуры. Они делятся на относительные: (градус Цельсия, градус Фаренгейта) и абсолютные: (Кельвин, градус Ранкина). Наиболее известными являются: градус Цельсия (°C), градус Фаренгейта (°F), Кельвин (K), градус Реомюра (°Ré, °Re, °R), градус Рёмера (°Rø), градус Ранкина (°Ra), градус Делиля (°Д или °D), градус Гука (°H), градус Дальтона (°Dа), градус Ньютона (°N), Лейденский градус (°L или ÐL), Планковская температура (TP). Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами. В равновесном состоянии температура имеет одинаковое значение для всех макроскопических частей системы. Если в системе два тела имеют одинаковую температуру, то между ними не происходит передачи кинетической энергии частиц (тепла). Если же существует разница температур, то тепло переходит от тела с более высокой температурой к телу с более низкой. Температура связана также с субъективными ощущениями «тепла» и «холода», связанными с тем, отдаёт ли живая ткань тепло или получает его. Формулы перехода между основными температурными шкалами представлены в таблице 1 и таблице 2. Таблица 1 - Пересчет температуры между основными шкалами
Таблица 2 - Сравнение температур между основными шкалами
|