Производство ВМС на предпр. НХ. Производство ВМС на предпр. Лекции по курсу производство вмс на предприятиях нефтехимии
Скачать 2.6 Mb.
|
Производство политетрафторэтилена и сополимеров тетрафторэтилена в суспензии и эмульсии Политетрафторэтилен (ПТФЭ, фторопласт-4, фторлон-4), получаемый полимеризацией тетрафторэтилена, является полностью фторированным полиэтиленом. Тетрафторэтилен (ТФЭ) CF2-CF2 — бесцветный газ без запаха. Чистый ТФЭ легко полимеризуется при хранении. Поэтому в него добавляют ингибиторы (бутилмеркаптан, третичные амины и др.). С кислородом воздуха образует окись ТФЭ. При инициировании образуется ПТФЭ. Реакция протекает с большой скоростью и при значительном выделении тепла (126 кДж/моль). В промышленных условиях производство высокомолекулярного ПТФЭ осуществляют полимеризацией ТФЭ в водной суспензии или в эмульсии. При проведении реакции в растворе обычно получают полимеры с низкой молекулярной массой, используемые в качестве масел и смазок, или низкомолекулярные жидкие вещества, например фторированные спирты H(CF2CF2)nCH2OH, где n = 1÷6, пригодные для получения гидроперфторкарбоновых кислот — эмульгаторов эмульсионной полимеризации. Процесс производства ПТФЭ полимеризацией ТФЭ в воде под давлением до 10 МПа в присутствии инициатора, но без применения эмульгатора, носит название суспензионного. Он состоит из следующих стадий: загрузка компонентов в автоклав, полимеризация ТФЭ, выделение, промывка и сушка полимера (рис. 8.1). В автоклав 1, предварительно продутый азотом, который не содержит кислорода, :агружают деионизированную воду, инициатор (персульфат калия) и регулятор рН cреды (буру). Затем после охлаждения и вакуумирования в автоклав вводят ТФЭ и при перемешивании поднимают температуру до 70-80 °С. Реакцию проводят под давлением 4-10 МПа. Обычно за 1 ч при 80 °С образуется 85-90 % ПТФЭ. После окончания процесса автоклав охлаждают, не вступивший в реакцию ТФЭ вытесняют азотом, суспензию полимера в воде подают на центрифугу 2 и отделяют жидкую фазу. ПТФЭ собирают в бункере3, измельчают в дробилке 4, многократно промывают горячей водой и после центрифугирования в центрифуге 5 сушат в сушилке 6 при 150°С. ПТФЭ представляет собой белый, непрозрачный, рыхлый волокнистый порошок. Рис. 8.1. Схема производства политетрафторэтилена в суспензии: 1 — автоклав; 2, 5 — центрифуги; 3 — бункер порошка; 4 — дробилка; 6 — сушилка Ниже приведены типовые рецептуры суспензионной (I) и эмульсионной (II) полимеризации теграфторэтилена и суспензионной полимеризации трифторхлорэтилена (III), масс.ч.: Введение в водную суспензию ПТФЭ поверхностно-активных веществ в количестве 9-12% приводит к получению более концентрированных суспензий, содержащих 50-65 % полимера. При эмульсионном способе получения ПТФЭ полимеризацию ТФЭ проводят в воде в присутствии эмульгатора (аммониевой или калиевой соли перфторкарбоновой или моногидроперфторкарбоновой кислоты) и инициатора при 55-70°С и давлении до 7 МПа в течение 25 ч. В результате реакции образуется латекс полимера в воде, содержащий частицы диаметром 0,1-1,0 мкм. Концентрирование латекса и выделение полимера после разрушения эмульсии позволяет получить тонкодисперсный порошок. Сополимеры ТФЭ с ВДФ, ГФП, ТФХЭ и этиленом получают по аналогичным схемам. Производство политрифторхлорэтилена и сополимеров трифторхлорэтилена в суспензии Политрифторхлорэтилен (ПТФХЭ, фторопласт-З, фторлон-3), получают полимеризацией трифторхлорэтилена (ТФХЭ) CF2=CFCl. Газообразный и жидкий ТФХЭ взаимодействует с кислородом воздуха при комнатной температуре и обычном давлении в отсутствие света, образуя соединения, которые после гидролиза дают щавелевую кислоту, фтористый и хлористый водород и небольшое количество перекиси. Соприкосновение ТФХЭ с водой приводит к образованию продуктов гидролиза, содержащих ионы фтора и хлора. ТФХЭ полимеризуется в массе, в органическом растворителе и в водной среде. Во всех случаях образующиеся высокомолекулярные продукты выпадают из раствора в осоадок, так как они не растворяются ни в жидком мономере, ни в других растворителях. Наиболее широко применяют два последних метода, причем полимеризацией в растворителе обычно получают низкомолекулярные продукты (масла), а высокомолекулярный полимер синтезируют полимеризацией ТФХЭ в водной среде (суспензионный метод). На скорость процесса большое влияние оказывает рН среды, которая должна быть в интервале 2,5-4,0. Технологический процесс производства ПТФХЭ осуществляется по схеме, приведенной на рис. 8.1. Типичная рецептура полимеризации ТФХЭ приведена в разделе 8.1. Полимеризация протекает при 20-35°С и давлении 0,3-1,7 МПа; конверсию доводят до 80-90 %. Инициаторами являются персульфаты, пероксид водорода, тирет-бутилпербензоат и др. После удаления непрореагировавшего ТФХЭ реактор разгружают, ПТФХЭ, представляющий собой белый порошок, отделяют от водной среды, промывают несколько раз горячей водой и сушат. Размолом порошка в органических жидкостях получают суспензии как нестабилизированные (например, в спирте, в смеси спирта и ксилола), так и стабилизированные (например, в смеси спирта и воды) с добавкой поверхностно-активных веществ. Сополимеры ТФХЭ с ВДФ, ГФП и этиленом получают аналогичным образом. Низкомолекулярный ПТФХЭ синтезируют полимеризацией ТФХЭ в хлороформе при 100-150°С в присутствии пероксидов. Хлороформ является не только растворителем, но и агентом переноса цепи, снижающим молекулярную массу полимера. Производство поливинилфторида и сополимеров винилфторида в суспензии Поливинилфторид получают полимеризацией винилфторида (ВФ) в эмульсии. Винилфторид СН2 = CHF — бесцветный газ, легко полимеризующийся в эмульсии при нагревании в присутствии радикальных инициаторов (пероксида лаурила, ацетилциклогексилсульфонила, диизопропилпероксикарбоната и др.) и эмульгаторов (карбоксиметилцеллюлозы и др.). Схема процесса получения ПВФ, а также сополимеров ВФ с ТФЭ и другими непредельными соединениями аналогична схеме получения ПТФЭ (см. рис. 8.1). ПВФ выпускают в виде белого порошка. Производство поливинилиденфторида и сополимеров винилиденфторида в суспензии Поливинилиденфторид (ПВДФ) получают полимеризацией винилиденфторида (ВДФ) СН2=CF2. ВДФ — бесцветный газ, полимеризующийся при 60-100°С в водной суспензии в присутствии радикальных инициаторов. Схема процесса получения ПВДФ подобна схеме получения ПТФЭ (см. рис. 8.1). Эмульсионный полимер обладает более низкими свойствами, чем суспензионный, который отличается узким молекулярно-массовым распределением, пониженной разветвленностью и большой чистотой. Выпускают ПВДФ в виде белого порошка, дисперсии в органических растворителях (смеси диметилфталата с диизобутилкетоном) и в растворе диметилацетамида. Из сополимеров наибольшее распространение получили сополимеры с ТФХЭ и ГФП. ЛЕКЦИЯ 15. Свойства и применение фторопластов. Политетрафторэтилен и сополимеры тетрафторэтилена. Политрифторхлорэтилен и сополимеры трифторхлорэтилена. Поливинилфторид, поливинилиденфторид и сополимеры винил- иденфторида. Марочный ассортимент фторопластов. СВОЙСТВА И ПРИМЕНЕНИЕ ФТОРОПЛАСТОВ Политетрафторэтилен и сополимеры тетрафторэтилена ПТФЭ — белый, непрозрачный термопластичный полимер, выпускаемый как в виде тонкого или волокнистого порошка, так и в виде водной суспензии, содержащей 50-65% тонкодисперсного порошка. Этот полимер обладает уникальным комплексом физических и химических свойств. Он не растворяется ни в одном из известных органических растворителей и по химической стойкости превосходит все известные материалы (золото, платину, стекло, фарфор, эмаль, специальные стали и сплавы). Он стоек ко всем минеральным и органическим кислотам, щелочам, окислителям, газам и другим агрессивным средам. Разрушение ПТФЭ наблюдается лишь при действии расплавленных щелочных металлов (и растворов их в аммиаке), элементарного фтора и трехфтористого хлора при повышенных температурах. Вода не смачивает фторопласт-4 и не оказывает никакого воздействия на него при самом длительном испытании. ПТФЭ — кристаллический полимер, содержащий 45-85 % кристаллической фазы и плавящийся при 327 °С. Степень кристалличности оказывает влияние на физико-механические свойства полимера, но все же он является термостойким и теплостойким, сохраняющим свои рабочие свойства в пределах от -273 до +250°С. При 327 °С исчезает кристаллическая фаза и ПТФЭ превращается в аморфный прозрачный материал с высокой вязкостью расплава, что требует специальных методов переработки этого полимера в изделия. При 450°С начинается заметная деструкция ПТФЭ, сопровождающаяся выделением ТФЭ и других продуктов. Физико-механические свойства ПТФЭ (табл. 8.2) достаточно высоки, хотя многие пластмассы превосходят его по прочности. Но из всех пластмасс только ПТФЭ сохраняет все свойства в таком широком интервале температур. ПТФЭ обладает низким коэффициентом трения 0,05-0,27, мало изменяющимся почти до температуры плавления. Введение в полимер различных неорганических веществ и материалов (кокса, графита, стеклянного волокна и др.) позволяет повысить его жесткость и твердость. ПТФЭ широко применяют для изготовления антифрикционных изделий (подшипники, втулки и др.), уплотнительных материалов при работе в агрессивных срезах (ленты, прокладки, сальниковые набивки), электро- и радиотехнических изделий (конденсаторная и электроизоляционная пленка, пластины, кольца, диски, гсакоткань, фольгированный стеклотекстолит и др.), покрытий по металлам и керамике, поропластов для фильтрования агрессивных жидкостей, волокна и тканей, изделий медицинского назначения. Ряд свойств ПТФЭ (растворимость, перерабатываемость в изделия) изменяют путем сополимеризации с другими мономерами: этиленом, ГФП, ВДФ. Сополимеры используются в тех же областях промышленности, что и ПТФЭ, но могут быть переработаны в изделия методами прессования, литья под давлением и экструзии, могут свариваться и склеиваться. Ассортимент антифрикционных, электроизоляционных и химически стойких изделий при этом значительно расширяется. Политрифторхлорэтилен и сополимеры трифторхлорэтилена ПТФХЭ — прозрачный термопластичный полимер, выпускаемый в виде порошка. Это кристаллический полимер, содержащий до 80-85 % кристаллической фазы. ПТФХЭ на холоду не растворяется в органических растворителях, но при 150 "С растворяется в хлорированных и ароматических углеводородах. При 208-210°С ГТТФХЭ плавится и переходит в вязкотекучее состояние. Физико-механические свойства полимера (см. табл. 8.2) сильно зависят от молекулярной массы и степени кристалличности и снижаются с повышением температуры. Химическая стойкость высока, хотя и ниже, чем у ПТФЭ. Методами прессования, литья под давлением и жструзии из ПТФХЭ изготовляют электро- и радиодетали, мембраны и клапаны для измерительных приборов, прокладки, втулки, седла и тарелки клапанов для химического машиностроения, рукавные и плоские пленки для печатных схем, транспортерных лент, термокопировальных аппаратов, изоляции проводов и для упаковки реактивов, медикаментов и др. Сополимеры ТФХЭ с этиленом, ГФП и ВДФ применяются для изготовления труб, шлангов, пленки и листов для работы в агрессивных средах, тары для хранения и транспортировки кислот и различных жидкостей, антикоррозионных, антиадгезионных и антифрикционных покрытий. Низкомолекулярные полимеры ТФХЭ (масла и воски) служат в качестве противоизносных присадок к минеральным и синтетическим маслам, а также для смазки кранов, вентилей, насосов и компрессоров. Поливинилфторид, поливинилиденфторид и сополимеры винилиденфторида ПВФ — прозрачный термопластичный кристаллический полимер, выпускаемый в виде белого порошка с температурой плавления 190-198 °С. Этот полимер сочетает высокую прочность (см. табл. 8.2) с отличной стойкостью к атмосферным воздействиям и с хорошей адгезией к металлам, дереву, пластмассам, строительным материалам. Диэлектрические показатели его хуже, чем у других фторопластов. Чаще всего ПВФ применяют в виде пленочного материала в химической промышленности и в строительстве для антикоррозионной и декоративной отделки наружных и внутренних стен зданий, промышленных сооружений, общественных учреждений, вагонов, самолетов. Пленку готовят методом экструзии и методом полива из раствора полимера в диметилсульфоксиде, бутиролактоне или диметилфталате. ПВДФ — прозрачный термопластичный полимер, выпускаемый в виде тонкого или волокнистого порошка белого цвета, а также в виде суспензий в смеси спирта с диметилформамидом. По сравнению со всеми другими фторопластами он обладает наиболее высокими механическими свойствами (см. табл. 8.2) и наилучшей перерабатываемостью в изделия методами литья под давлением и экструзии. ПВДФ плавится при 170-171°С, степень его кристалличности достигает 60-65%. Благодаря прочности, износостойкости, жесткости и устойчивости к ползучести, стабильности размеров изделий в широком интервале температур, хорошей радиационной и химической стойкости ПВДФ используется для изготовления труб и деталей трубопроводов для транспортировки агрессивных жидкостей, облицовочных материалов для емкостей, насосов, вентилей, клапанов, электроизоляции приводов и защитных покрытий для электротехнического оборудования, лакотканей в производстве слоистых материалов и пленок для упаковки реактивов, медикаментов и других препаратов. Термостойкий и химически стойкий полимер, сочетающий эластичность с высокой прочностью и хорошей растворимостью, получают сополимеризацией ВДФ с ГФП. Его применяют для получения термостойких лаковых покрытий, а также пленок методом полива 15-20%-ного раствора в кетонах или сложных эфирах. Пленки и покрытия предназначены для изоляций проводов, изготовления мембран, прокладок и других изделий. Марочный ассортимент фторопластов Ассортимент фторопластов, выпускаемых промышленностью, чрезвычайно широк. Разработаны фторопласты с разнообразным сочетанием физико-механических, электрических, термических, химических, реологических свойств. На основе ПТФЭ выпускают фторопласты следующих марок; фторопласт-4, -4Д, -4ДП, -4ДПТ, -4ДМ и др. — это термостойкие, устойчивые к агрессивным средам материалы. Они обладают исключительно высокими диэлектрическими показателями, высокими антифрикционными свойствами. В связи с тем, что фторопласт-4 не может переходить в высокоэластическое и вязкотекучее состояние, его переработка в изделия проводится методом предварительного формования заготовки на холоду с последующим спеканием. Разработаны плавкие фторопласты, которые могут подвергаться многократному высокотемпературному формованию, не претерпевая термодеструкции и не изменяя основных свойств. Это фторонласт-4МБ, -40,42, -3,4Н, -ЗМ, -30, -32Л, -2, -2М и др. Плавкие фторопласты уступают фторопласту-4 по теплостойкости, диэлектрическим, антифрикционным и антиадгезионным свойствам, однако они надежны в работе при высоких механических нагрузках, повышенной радиации, которых фторопласт-4 не выдерживает. Плавкие фторопласты могут быть получены в виде концентрированных суспензий. Покрытия из таких суспензий отличаются повышенной адгезией к металлам. Покрытия можно получать методом порошкового напыления. Некоторые плавкие фторопласты (Ф-26, -23, -42, -4Н, -2, -2М, -1) обладают избирательной растворимостью в органических растворителях. Их применяют для получения пленок, покрытий, лакотканей, волокон. Гомологический ряд фторированных полимеров включает фторопласт-1 (поли- винилфторид), фторопласт-2 (поливинилиденфторид), фторопласт-3 (политриф- торэгилен) и фторопласт-4 (политетрафторэтилен). С уменьшением количества фтора в полимере снижается плотность полимера, что позволяет снижать массу изделия, его стоимость. Разработаны различные разновидности фторопластов, позволяющие расширять области практического использования и создавать материалы и изделия с комплексом необходимых эксплуатационных характеристик. Например, фторопласт-2М отличается от Ф-2 большей эластичностью и более низкой температурой плавления. Фторопласты-2Б и -2МБ обладают более высокими электрическими свойствами. Фторопласт-2БА превосходит все марки фторопластов на основе ПВДФ по адгезии и обладает повышенными цвето- и светостабилыюстью. Фторопласт-2МЭ пригоден для изготовления микропористых фильтров с высокой проницаемостью, применяемых для ультрафильтрации агрессивных сред. Модификацией фторопласта-3 получен фторопласт-ЗМ, отличающийся меньшей скоростью кристаллизации, меньшим размером образующихся при кристаллизации сферолитов и более высокой молекулярной массой. Изделия из фторопласта-ЗМ более прозрачны, чем изделия из фторопласта-3. По физико-механическим свойствам он мало отличается от фторопласта-3, но более эластичен. Фторопласт-4МБ обладает почти всеми свойствами фторопласта-4, но способен перерабатываться в изделия обычными для термопластов методами экструзией, литьем под давлением, прессованием. Эта способность фторопласта-4 МБ обусловлена пониженной вязкостью его расплава (103-105 Па•с при 300°С) по сравнению с вязкостью расплава фторопласта-4 (1016 Па•с при 370°С). Фторопласт-4МБ-2 — разновидность фторопласта-4 МБ. Он отличается лучшей термостабильностыо, более высокими диэлектрическими показателями. Фторопласт-4 МД выпускается в виде концентрированной водной суспензии и применяется для получения антикоррозионных, антиадгезионных, электроизоляционных, антифрикционных покрытий, лакотканей и свободных пленок. Фторопласт-40 по сравнению со фторопластом-4 имеет более высокую прочность, твердость, износостойкость и способен перерабатываться в изделия обычными для термопластов методами. Изменяя условия полимеризации, можно получить полимер с различной молекулярной массой и вязкостью расплава 103-108 Па•с. Фторопласт-400 имеет высокие оптические характеристики. Оптическая прозрачность: светопропускание в видимой части спектра составляет 90-95 %, светорассеяние 5-8% и не зависит от толщины образца (до 10 мм). Высококачественные оптические изделия можно получать методами прессования и экструзии без закалки. Изделия сохраняют свою прозрачность до 150°С при выдержке в течение 3 ч. При 100-120°С фторопласт-400 сохраняет высокую прочность при растяжении (24,5 МПа) и не утрачивает эластичность при низких температурах. |