Главная страница
Навигация по странице:

  • 2.4. Основные положения волновой теории передачи света по световодам 2.4.1. Основные понятия

  • Взаимодействие оптической волны со средой

  • Лекции ВОЛС. Лекция Краткий обзор по истории развития оптической связи


    Скачать 0.77 Mb.
    НазваниеЛекция Краткий обзор по истории развития оптической связи
    АнкорЛекции ВОЛС
    Дата21.10.2021
    Размер0.77 Mb.
    Формат файлаdocx
    Имя файлаЛекции ВОЛС.docx
    ТипЛекция
    #252482
    страница4 из 14
    1   2   3   4   5   6   7   8   9   ...   14
    Часть меридиональных и косых лучей, испытывая полное внутреннее отражение в местах падения на границу сердцевина — оболочка, распространяется зигзагообразно вдоль ОВ.



    Рис. 2.13. Модель ОВ со ступенчатым профилем показателя преломления



    Рис. 2.14. Траектория прохождения косого луча в ОВ

    Рассмотрим ход меридиональных лучей, падающих на входной торец ОВ и распространяю- щихся затем вдоль волокна (рис. 2.13). В зависимости от угла наклона луча θ1 к оси Z меридиональные лучи, лежащие в плоскости рисунка, могут испытывать полное внутреннее отражение на границе сердечник — оболочка, если θ1n2/n1). При этом образуются моды сердечника 1, или направляемые моды. Если луч падает под углом arccos(n2/n1)< θ1< arccos(n3/n2), то он может сформировать моду оболочки 2. Световые лучи, падающие под углом θ1< arccos(n3/n2), излучаются в пространство, т.е. в защитную оболочку, образуя вытекающие моды, или моды излучения 3.

    Луч, падающий на торец волокна из окружающей среды под углом θ0 к оси волокна, преломляется при вхождении в сердцевину и распространяется в ней под углом θ1 в соответствии с законом Снеллиуса:

     (2.10)

    При этом преломленный луч падает на боковую поверхность под углом φ1=(π/2) – θ1. Для полного внутреннего отражения лучей от боковой поверхности необходимо, чтобы φ1≥φкр, где критический угол падения φкропределяется выражением (2.9). Следовательно, sinφ1=cosθ1n2/n1.

    Из (2.10) следует, что



    Таким образом,



    Однако   , т.е.

     (2.11)

    Таким образом, если выполняется условие (2.11), то любой меридиональный луч распространяется вдоль сердцевины волокна. Это условие справедливо и для косых лучей.



    Рис. 2.15. Оптическое волокно:
    1-сердцевина; 2-оболочка; 3-защитное покрытие

    На рис. 2.15 представлена конструкция волокна в оболочке с защитным покрытием, в котором оптическое излучение распространяется в ОВ такой конструкции при выполнении условия n1>n2>n3.. Соотношение между n1и n2принято характеризовать относительной разностью ПП [4]

     (2.12)

    которая для большинства ОВ составляет 10-2...10-3. Показатель преломления оболочки имеет постоянное значение, а сердцевины — либо постоянное, либо изменяющееся по радиусу по определенному закону.

    Изменение показателя преломления ОВ вдоль радиуса называется профилем показателя преломления.

    Наличие оптической оболочки усложняет волновой процесс в ОВ. Часть меридиональных и косых лучей, многократно отражаясь от границы сердцевина — оболочка, распространяется вдоль сердцевины и образует моды сердцевины (направляемые моды). Остальные лучи, которые падают на эту границу под углами φпкр, уходят из сердцевины наружу. Лучи, покинувшие сердцевину, образуют моды излучения. Некоторые из них распространяются в оболочке за счет полного внутреннего отражения от границы оболочка — окружающая среда и образуют моды оболочки. Если защитное покрытие ОВ выполнено из сильно поглощающего материала, то оно устраняет перекрестные помехи между ОВ в оптическом кабеле, обусловленные модами излучения. Кроме того, защитное покрытие рассеивает энергию мод оболочки аналогично направляемым модам диэлектрического стержня. Как отмечалось выше, поле направляемых мод частично проникает в окружающую среду, где экспоненциально убывает, при этом глубина проникновения в оболочку ОВ, т.е. расстояние, на котором это поле убывает в е раз (е=2,718), определяется при φпкр выражением [5]:

     (2.13)

    где λ — длина волны оптического излучения, вводимого в ОВ.

    Режим полного внутреннего отражения предопределяет условие подачи света на входной торец волоконного световода. Из рис. 2.16 видно, что световод пропускает лишь свет, заключенный в пределах телесного угла θА, величина которого обусловлена углом полного внутреннего отражения θВ. Этот телесный угол θА характеризуется апертурой. Апертура-это угол между оптической осью и одной из образующих светового конуса, попадающего в торец волоконного световода, при котором выполняется условие полного внутреннего отражения. Обычно пользуются понятием числовой апертуры:

     (2.14)

    где n0, n1, n2 — показатели преломления воздуха, сердечника, оболочки соответственно.

    Имея в виду, что для воздуха n0=1, получим

     (2.15)

    Как видно из рис. 2.16 между углом полного внутреннего отражения θВ и апертурным углом падения луча θАимеется взаимосвязь. Чем больше угол θВ, тем меньше апертура волокна θА. Для ступенчатых ОВ, используемых в системах связи, числовая апертура обычно равна 0,18 — 0,23.

    Формула (2.15) учитывает только меридиональные лучи ОВ. Однако, в основном, в ОВ преобладают косые лучи, которые не пересекают ось, а распространяются по ломаным (для ступенчатого ОВ) или право- или левовинтовым спиралям (для градиентного ОВ).

    Вывод простого выражения для числовой апертуры косых лучей очень сложен. Отметим только, что числовая апертура, подсчитанная для меридиональных лучей ступенчатого ОВ (2.15), меньше действительной числовой апертуры NAД, учитывающей все лучи. Отношение NAД /NA для различных значений ПП п1и п2, например в [5, 6], увеличивается с уменьшением разности п1-п2т.е. с уменьшением апертуры NA меридиональных лучей.



    Рис. 2.16. Принцип действия ОВ

    Простое и наглядное представление направляемых мод в ОВ с помощью лучей не учитывает свойства света как электромагнитной волны и во многих случаях не позволяет получить правильные результаты. Например, в соответствии с изложенным выше вся бесконечная совокупность лучей, падающих на торец ОВ в пределах угла θА, должна образовывать также бесконечную совокупность направляемых мод. Однако это не так. Волновая теория света показывает, что только конечное число лучей конического пучка с определенными углами падения на торец может образовать направляемые моды ОВ. Это объясняется с точки зрения лучевой оптики в ступенчатом световоде тем, что при полном внутреннем отражении от границы с оболочкой волна приобретает фазовый сдвиг, зависящий от угла падения. Если в сердцевине многократно отраженные волны складываются по фазе, то образуется направляемая волна. В противном случае поля волн взаимно компенсируются.

    2.4. Основные положения волновой теории передачи света по световодам

    2.4.1. Основные понятия

    Строгое решение задач распространения электромагнитной энергии по оптическим кабелям требует применения классической электродинамики и уравнений Максвелла. На основе электродинамики можно рассмотреть практически все вопросы передачи, излучения, влияния и поглощения в ОК. Правда, во многих случаях очень сложно искать точные решения на базе электродинамики. Для практики в свое время были разработаны приближенные методы решения задач различных классов. Таким наиболее характерным методом является метод теории геометрической оптики, когда (квазиоптический режим) совершается переход от волновых электродинамических процессов к лучевым процессам (λ→0). При λ→0 области очень высоких частот (свыше 1013 Гц) справедливы уравнения геометрической оптики. Однако квазиоптический режим передачи по ОВ является предельным случаем строгих уравнений электродинамики.

    Носителем электромагнитной энергии, широко используемой в современной радиоэлектронике, электросвязи и высоковольтной технике, является электромагнитное поле. Электромагнитное поле — это особый вид материи, оказывающий силовое воздействие на заряженные частицы и обладающий энергией, массой, скоростью, т.е. всеми свойствами материи. Поле отличается непрерывным распределением в пространстве (электромагнитные волны) и обнаруживает дискретность структуры (фотоны). Электромагнитное поле представляет собой единство двух составляющих — электрического и магнитного полей. Электрическое поле (Е) характеризуется силовым взаимодействием как с неподвижными, так и с движущимися зарядами. Магнитное поле (Н) характеризуется силовым взаимодействием лишь с движущимися зарядами. Электрические и магнитные поля связаны с определенными количествами электромагнитной энергии. В различных случаях может преобладать тот или иной вид энергии (электрической или магнитной).



    Рис. 2.17. Линии полей:
    1-потенциальные; 2-вихревые

    Различают два основных типа полей: потенциальное и вихревое. Потенциальное поле тесно связано со своим источником. Линии поля имеют начало и конец. Линии вихревого поля замыкаются по соленоиду, всегда непрерывны и не имеют начала и конца (рис. 2.17). Электростатическое поле является чисто потенциальным, а магнитное — чисто вихревым. Переменное электромагнитное поле в общем случае является суперпозицией потенциального поля электрических зарядов и вихревого поля индукции.

    Электрические и магнитные свойства среды характеризуются тремя параметрами: диэлектрической проницаемостью (ε), магнитной проницаемостью (μ) и электрической проводимостью (σ).

    Оптическая мощность сигнала, передаваемая по ОВ, описывается векторами напряженности (E ) и индукции (D ) электрического поля, а также векторами напряженности (Н) и индукции (В) магнитного поля. Последние связаны между собой и параметрами среды распространения следующими уравнениями Максвелла, при условии, что проводимость среды σ = 0:

     (2.16)

     (2.17)

     (2.18)

     (2.19)

     (2.20)

     (2.21)

    Диэлектрическая и магнитная проницаемости описывают материалы, используемые в ВОСП, которые могут быть линейными и нелинейными, изотропными и анизотропными, однородными и неоднородными, дисперсионными и недисперсионными. У абсолютного большинства материалов, используемых в ВОСП, μ=μ0 - магнитная проницаемость вакуума.

    В зависимости от свойств параметров ε, μ и σ различают следующие среды:

    • линейные, в которых параметры ε, μ и σ не зависят от величины электрического и магнитного полей;

    • нелинейные, в которых параметры ε, μ и σ (или хотя бы один из них) зависят от величины электрического или магнитного полей.

    Все реальные среды, по существу, являются нелинейными. Однако при не очень сильных полях во многих случаях можно пренебречь зависимостью с, и и ч от величины электрического и магнитного полей и считать, что рассматриваемая среда линейна.(В дальнейшем будут рассматриваться только линейные среды.) Линейные среды делятся на однородные и неоднородные, изотропные и анизотропные.

    Однородными называют среды, параметры ε, μ и σ которых не зависят от координат, т.е. свойства среды одинаковы во всех ее точках. Среды, у которых хотя бы один из параметров ε, μ или σ является функцией координат, называют неоднородными. Несмотря на то, что кварц является однородной средой, оптическое волокно неоднородно из-за того, что показатели преломления сердцевины и оболочки различны. Поэтому области сердцевины и оболочки в волокне со ступенчато изменяющимся показателем преломления могут рассматриваться раздельно как однородные среды, в то время как в градиентном волокне это допущение неприемлемо, ввиду его неоднородной сердцевины.

    Если свойства среды одинаковы по разным направлениям, то среду называют изотропной. Соответственно среды, свойства которых различны по разным направлениям, называют анизотропными. В изотропных средах вектор электрической поляризации ( р) и вектор (E), векторы (D) и (Е), а также векторы магнитной поляризации (М) и (Н), векторы (В ) и (Н ) параллельны, в анизотропных средах они могут быть непараллельными. В изотропных средах параметры ε, μ и σ — скалярные величины. В анизотропных средах, по крайней мере, один из этих параметров является тензором.

    В кристаллическом диэлектрике тензором является диэлектрическая проницаемость ε. В общем случае ее записывают в виде матрицы:

       (2.22)

    При этом форма уравнения (2.18) остается прежней:

     (2.23)

    Для того чтобы записать уравнение (2.23) в проекциях на оси прямоугольной системы координат х, у, z, нужно раскрыть правую часть уравнения (2.23) по обычным правилам умножения матрицы. В результате получим

     (2.24)

    Непараллельность векторов D и Е (а также р и Е) в анизотропной среде объясняется тем, что в общем случае направление возникающего в результате поляризации анизотропной среды вторичного электрического поля, созданного связанными зарядами вещества, составляет некоторый угол (отличной от 0 и π) с направлением первичного электрического поля.

    Таким образом, в изотропной среде электромагнитные свойства, такие как показатель преломления, одинаковы во всех направлениях, а Е и р являются векторами одинаковой ориентации, и так как кварц представляет собой изотропную среду, идеально цилиндрическое оптическое волокно также является изотропным.

    Среда, показатели преломления которой вдоль двух разных направлений соответствующей системы координат, например вдоль осей х и у, различны, называется двулучепреломляющей, поэтому оптическое волокно, не обладающее цилиндрической системой, также является двулучепреломляющим. Двулучепреломление ряда материалов, например ниобата лития, используется в таких волоконно-оптических компонентах, как модуляторы, изоляторы и настраиваемые фильтры.

    Среда, в которой ε=const, т.е. однородная по координатам пространства и не зависящая от частоты, называется однородной недисперсионной средой. В ней все частотные составляющие сигнала распространяются с одной и той же фазовой скоростью. Следовательно, сигнал не претерпевает дисперсии. Большинство оптических сред характеризуется тем, что ε = ε (ω) и ν= ν(ω) являются функциями от частоты. Это значит, что косинусоидальные волны

     (2.25)

    разных частот распространяются с различными фазовыми скоростями, что приводит к расширению сигнала, т.е. к появлению дисперсии.

    В выражении (2.25): А — амплитуда волны; ω — круговая частота; n — единичный вектор, нормальный к плоскости, в которой находится плоская волна; r — координата точки наблюдения.

    Взаимодействие оптической волны со средой

    До сих пор мы говорили о средах без учета распространения в них света, представляющего собой электромагнитную волну. Что происходит, когда оптическая волна распространяется в изотропной среде (материале)?

    Как известно, электроны в атоме заряжены отрицательно, а ядро несет положительный заряд. Электрическое поле синусоидальной оптической волны, распространяющейся через материал, воздействует на него. Под действием силы внешнего электрического поля в материале изменяются колебания заряженных частиц атома. В результате такого взаимодействия мощность световой волны уменьшается, т.е. происходит поглощение света. Колеблющиеся заряды атома переизлучают полученную от световой волны мощность на собственных частотах ω0. Таким образом, синусоидальная оптическая волна частотой в создает систему осцилляторов (диполей). Средняя во времени излучаемая осциллятором мощность в соответствии с законом Рэлея [7] представляется в виде:

     (2.26)

    где q — заряд частицы, колеблющейся по синусоидальному закону с частотой ω, с — скорость света в вакууме; ε — диэлектрическая проницаемость среды (материала); 

    Комплексная амплитуда вынужденных колебаний частицы с частотой ω

     (2.27)

    где ma, ω0 — соответственно масса покоя, коэффициент «трения» и резонансная частота частицы.

    Поэтому при взаимодействии оптического поля со средой возникают электрические диполь. На микроскопическом уровне плотность дипольных моментов характеризуется вектором поляризации среды. Если в единице объема имеется N одинаковых атомов, каждый из которых содержит, например, η электронов, то вектор поляризации

     (2.28)

    Таким образом, индуцированная электрическая поляризация материала, или просто поляризация, может быть описана при помощи вектора р, который зависит как от особенностей материала, так и от прилагаемого поля. Индуцированная поляризация рассматривается как отклик среды на прилагаемое электрическое поле. Рассмотрим связь р и Е более подробно, определив вначале вектор D, называемый электрической индукцией:

     (2.29)

    где εст — постоянная, называемая статической диэлектрической проницаемостью среды, в нашем случае ОВ.

    Исходя из (2.28) и (2.29), комплексную диэлектрическую проницаемость можно представить в виде суммы статической и динамической составляющих:

     (2.30)

    Откуда

     (2.31)

    Для чистого стекла (плавленого кварца без примесей, химическая формула которого SiO2) резонансная частота электрона ω0 расположена в ультрафиолетовой области спектра.

    Следовательно, в видимой и ближней инфракрасной областях спектра (ω<<ω0) диэлектрическая проницаемость практически постоянна:

     (2.32)

    В реальных стеклах, кроме атомов Si и О, в единице объема содержатся и ионы примесей (ионы — ОН, Fe, Cu, Cr и др.), а также молекулы. Таким образом, для реального стекла в выражение (2.31) необходимо добавить столько членов вида второго члена, сколько имеется диполей, обусловленных примесями. Молекула массивна, поэтому ее ω0 находится вне спектра частот, используемого в ВОСП. Связь р и E в оптическом волокне определяется свойствами среды (кварца) и является причиной двух важных явлений, относящихся к распространению в нем света, — дисперсии и нелинейным эффектам, которые налагают ограничения на функционирование современных систем ВОСП.
    1   2   3   4   5   6   7   8   9   ...   14


    написать администратору сайта