Главная страница
Навигация по странице:

  • Кумольный способ получения фенола.

  • Сборник лекции. Химическая технология - лекция. Лекция Общие вопросы химической технологии. Лекции 2, Принципы создания ресурсосберегающих технологий


    Скачать 1.71 Mb.
    НазваниеЛекция Общие вопросы химической технологии. Лекции 2, Принципы создания ресурсосберегающих технологий
    АнкорСборник лекции
    Дата11.08.2022
    Размер1.71 Mb.
    Формат файлаdoc
    Имя файлаХимическая технология - лекция.doc
    ТипЛекция
    #644058
    страница11 из 12
    1   ...   4   5   6   7   8   9   10   11   12
    5), (7) – (9), за которые они ответственны, предельно минимизированы.





    Электролиз раствора хлорида натрия с ртутным катодом.

    На ртутном катоде электродные реакции (1) и (2) идут с большим перенапряжением – потенциал разряда составляет 1,7 – 1,8 В. Натрий выделяется на ртутном катоде с большим эффектом деполяризации и потенциал разряда Na + на ртути много ниже стандартного и равен 1,23 В. Явление деполяризации ртутного катода обеспечивается тем, что разряд ионов натрия происходит с образованием химического соединения – амальгамы натрия



    которая непрерывно отводится с поверхности анода, растворяясь в избытке ртути. На перфорированном графитовом (или оксидно-рутениевом) аноде выделяется хлор



    Амальгаму натрия, содержащую 0,1 – 0,3% Na выводят из электролизера и разлагают нагретой водой в отдельном реакторе-разлагателе. В разлагателе идет электрохимическая реакция, соответствующая процессу в короткозамкнутом гальваническом элементе NaHg n [NaOH] С в котором амальгама служит катодом



    С хема электролизера с ртутным катодом представлена на рисунке 2.

    Глубоко очищенный концентрированный раствор NaCl подают в наклонный удлиненный электролизер, по дну которого самотеком, противотоком рассолу, движется ртуть, служащая катодом. Над ртутью расположен горизонтальный оксидно-рутениевый (или перфорированный графитовый) анод, погруженный в рассол. Анодная жидкость, содержащая непрореагировавший NaCl, выводится из электролизера совместно с хлор-газом, от которого отделяется в сепараторах и продувочных колоннах (на схеме не показаны). Хлор подают на осушку, а обесхлоренный рассол после очистки от ртути и примесей насыщается каменной солью и возвращается в электролизер. Амальгама натрия из электролизера перетекает в наклонный реактор-разлагатель, где движется противотоком дистиллированной воде, подаваемой в количестве, обеспечивающем получение 45%-ого раствора NaOH. На дне разлагателя размещены гребенчатые графитовые плиты, образующие с амальгамой короткозамкнутый гальванический элемент NaHg n [NaOH] С. Отводимый гидроксид натрия отделяют в сепараторах от водорода и передают потребителям. Ртуть, вытекающую из разлагателя, ртутным насосом перекачивают в электролизер.

    Поскольку на стадии электролиза щелочь не образуется, то в процессе с ртутным катодом исключены побочные реакции (5), (7) – (9) и процесс характеризуется высоким выходом по току и энергии.

    Однако, метод электролиза с ртутным катодом требует особо тщательной очистки исходного циркулирующего рассола, так как примеси магния, железа, кальция и других металлов снижают перенапряжение водорода на ртутном катоде, что может привести к нарушению катодного процесса и взрывам.

    Электролиз с ртутным катодом дает высококонцентрированные, химически чистые растворы гидроксида натрия, которые необходимы для целого ряда потребителей, прежде всего в производстве искусственных волокон, при синтезе и подготовки ионообменных материалов и др. Но использование ртути вредно для здоровья людей. Для получения химически чистых растворов NaOH начали применять электролиз раствора NaCl с ионообменной (катионообменной) мембраной, разделяющей катодное и анодное пространства. Этот метод более сложен по аппаратурному оформлению и эксплуатации аппаратуры, но значительно безопаснее, чем ртутный. Мембранный метод электролиза, так же как и диафрагменный, может считаться малоотходным технологическим процессом.

    Лекция 21. Химическая переработка нефти.????????????????????????????????????????????

    Производство метанола.

    Метанол – бесцветная жидкость (tкип = 65С) с запахом, подобным запаху этанола. Смешивается в любых соотношениях с водой и многими органическими жидкостями. Он горюч, дает с воздухом взрывоопасные смеси (6,0-34,7%) и представляет большую опасность в связи с высокой токсичностью. Является сырьем для получения формальдегида и полимеров на его основе, используется для получения сложных эфиров (метилметакрилат, диметилфталат, диметилсульфат) и применяется как метилирующий агент (синтез метиламинов), используется как растворитель, компонент моторных топлив и экстрагент.

     

    Теоретические основы процесса.

    Реакция получения метанола



    экзотермична и обратима.

    В качестве катализаторов используют оксидные цинк-хромовые (ZnO Cr2O3), медь-хромовые (CuO Cr2O3) и цинк-медь-хромовые катализаторы. Механизм образования метанола представляют схемой



    Побочными реакциями, осложняющими процессы, являются реакции образования диметилового эфира

    высших спиртов



    метана

    и диоксида углерода

     

    Обоснование выбора параметров процесса.

    Температура является фактором увеличения производительности процесса, однако с ее ростом равновесие основной реакции смещается в нежелательную левую сторону. Это обусловливает экстремальный характер зависимости производительности от температуры. Кроме того, с ростом температуры возрастает удельный вес реакций метанообразования. Это особенно нежелательно, т.к. накопление метана в реакционном потоке в результате многократной рециркуляции приводит к снижению производительности процесса из-за разбавления реагентов и смещения равновесия в левую сторону. Учет всех приведенных факторов обусловливает необходимость выбора оптимальной температуры, сочетающей высокую производительность процесса с благоприятными условиями для равновесия и минимальным образованием побочных продуктов. На практике при использовании активных катализаторов на основе CuO Cr2O3 и ZnO CuO Cr2O3 с добавками промоторов работают в диапазоне температур 250 - 300С.

    Давление является фактором смещения равновесия в сторону целевого продукта и фактором увеличения производительности процесса. Однако с ростом давления увеличиваются энергозатраты на компримирование. Поэтому используются оптимальные давления, сочетающие высокую производительность процесса при относительно невысоких энергозатратах. При использовании указанных катализаторов диапазон оптимальных давлений составляет 5-10 МПа. Следует при этом учитывать, что давление является фактором, взаимозаменяемым с температурой. Так, увеличение температуры и вызываемое этим смещение равновесия в сторону реагентов требует одновременно и повышение давления.

    Производство метанола.

    Метанол – бесцветная жидкость (tкип = 65С) с запахом, подобным запаху этанола. Смешивается в любых соотношениях с водой и многими органическими жидкостями. Он горюч, дает с воздухом взрывоопасные смеси (6,0-34,7%) и представляет большую опасность в связи с высокой токсичностью. Является сырьем для получения формальдегида и полимеров на его основе, используется для получения сложных эфиров (метилметакрилат, диметилфталат, диметилсульфат) и применяется как метилирующий агент (синтез метиламинов), используется как растворитель, компонент моторных топлив и экстрагент.

     

    Теоретические основы процесса.

    Реакция получения метанола



    экзотермична и обратима.

    В качестве катализаторов используют оксидные цинк-хромовые (ZnO Cr2O3), медь-хромовые (CuO Cr2O3) и цинк-медь-хромовые катализаторы. Механизм образования метанола представляют схемой



    Побочными реакциями, осложняющими процессы, являются реакции образования диметилового эфира

    высших спиртов



    метана

    и диоксида углерода

     

    Обоснование выбора параметров процесса.

    Температура является фактором увеличения производительности процесса, однако с ее ростом равновесие основной реакции смещается в нежелательную левую сторону. Это обусловливает экстремальный характер зависимости производительности от температуры. Кроме того, с ростом температуры возрастает удельный вес реакций метанообразования. Это особенно нежелательно, т.к. накопление метана в реакционном потоке в результате многократной рециркуляции приводит к снижению производительности процесса из-за разбавления реагентов и смещения равновесия в левую сторону. Учет всех приведенных факторов обусловливает необходимость выбора оптимальной температуры, сочетающей высокую производительность процесса с благоприятными условиями для равновесия и минимальным образованием побочных продуктов. На практике при использовании активных катализаторов на основе CuO Cr2O3 и ZnO CuO Cr2O3 с добавками промоторов работают в диапазоне температур 250 - 300С.

    Давление является фактором смещения равновесия в сторону целевого продукта и фактором увеличения производительности процесса. Однако с ростом давления увеличиваются энергозатраты на компримирование. Поэтому используются оптимальные давления, сочетающие высокую производительность процесса при относительно невысоких энергозатратах. При использовании указанных катализаторов диапазон оптимальных давлений составляет 5-10 МПа. Следует при этом учитывать, что давление является фактором, взаимозаменяемым с температурой. Так, увеличение температуры и вызываемое этим смещение равновесия в сторону реагентов требует одновременно и повышение давления.

    Кумольный способ получения фенола.

    Фенол С6Н5ОН представляет собой кристаллическое вещество (tпл=420С, tкип=181,40С) В свежеперегнанном виде он бесцветен,. Но при хранении приобретает глубокий оранжевый или красный цвет.

    Основные направления его применения – производство фенолоальдегидных полимеров, синтетических волокон капрон и нейлон, эпоксидных полимеров и поликарбонатов. Его используют также в качестве промежуточного продукта в производстве красителей, лекарственных и взрывчатых веществ, гербицидов. Алкилированием фенола получают антиокислительные присадки и промежуточные продукты для синтеза неионогенных ПАВ.

    Наиболее прогрессивным способом получения фенола является кумольный, основанный на реализации следующих стадий: 

    1.      Окисление изопропилбензола (кумола) в гидропероксид



    2.      Разложение получаемого гидропероксида на фенол и ацетон



    Суммируя уравнения (1) и (2) получаем результирующее уравнение процесса



    Можно видеть, что в правой части суммарного уравнения (3) фигурируют только фенол и ацетон, которые являются ценными товарными продуктами. С другой стороны, в этом процессе требуется дешёвое  и доступное сырьё (изопропилбензол и воздух). Это и делает кумольный способ получения наиболее экономичным среди всех известных способов получения фенола.

    Рассмотрим основные закономерности протекания стадий окисления и разложения гидропероксида изопропилбензола.

     





    Окисление изопропилбензола (кумола)

    Окисление изопропилбензола представляет собой типичный свободно-радикальный процесс с вырожденным разветвлением цепей. В отсутствие каких-либо посторонних инициирующих агентов зарождение цепей осуществляется посредством бимолекулярного взаимодействия молекул кислорода и изопропилбензола



    Эта реакция характеризуется высоким энергетическим барьером и протекает крайне медленно. Низкая скорость инициирования не может обеспечить концентрацию свободных радикалов на уровне, вызывающем заметное протекание цепного процесса.

    Поскольку гидропероксид изопропилбензола легко распадается  по слабой кислород-кислородной связи



    его накопление в ходе процесса приводит к лавинообразному увеличению скорости генерирования свободных радикалов, а значит, и скорости окисления изопропилбензола. Такой характер процесса обусловливает наличие некоторого индукционного периода реакции, который можно определить как время, в течение которого  в системе накапливается количество гидропероксида, обеспечивающее заметное протекание цепного процесса. В связи с этим естественным способом сокращения индукционного периода является добавление в исходный изопропилбензол некоторое количество гидропероксида или окисленной реакционной массы.

    Индукционный период процесса может быть значительно больше по причине присутствия в реакционной массе ингибиторов свободно-радикального окисления таких как серосодержащие органические соединения, фенолы и др. В этом случае индукционный период определяется как время, в течение которого в системе разрушается ингибитор J-H за счёт его взаимодействия с радикалами цепи

    R + J-H  RH + J

    Образующиеся при этом радикалы J малоактивны и не способны дальше продолжать цепь. В связи с отмеченной причиной увеличения индукционного периода важной технологической задачей является очистка исходного сырья от веществ, являющихся ингибиторами или способных при окислении давать ингибиторы.

    Обычные катализаторы жидкофазного окисления (соли марганца, кобальта и др.) в данном случае нельзя использовать в качестве инициирующих агентов, так как они вызываеют заметное разложение гидропероксида в побочный продукт – диметилфенилкарбинол.



    Процесс окисления изопропилбензола в гидропероксид осложняется образованием побочных продуктов: ацетофенона и диметилфенилкарбинола. Механизм основной и побочных реакций может быть представлен следующей схемой



    В соответствии с представленной схемой дифференциальная селективность процесса по гидропероксиду выразится уравнением



    (4)

    В условиях стационарности



    однако поскольку удельный вес ацетофенона в этом процессе невелик, членом r2 в последнем равенстве можно пренебречь



    Тогда соотношение концентраций  выразится уравнением



    Подставляя последнее выражение в уравнение (4), имеем окончательно



    Анализ этого уравнения показывает, что селективность реакции падает с понижением парциального давления кислорода и ростом глубины превращения (что соответствует накоплению гидропероксида и уменьшению концентрации углеводорода). В соответствии с более низкими энергиями активации реакции развития цепей основного процесса по сравнения с побочными Е4>E1 и E2>E3 селективность процесса растёт с понижением температуры, однако при этом понижается его скорость. Это обусловливает необходимость выбора оптимальной температуры. На практике процесс проводят при температурах 105-120С. Если процесс осуществляется в каскаде реакторов, то температуру процесса ступенчато понижают при переходе от одного реактора к другому. Такое решение позволяет при сохранении скорости процесса (за счёт увеличения концентрации гидропероксида) увеличить селективность процесса.

    Увеличение давления приводит к росту скорости и селективности процесса. В то же время давление ограничивается сверху в связи с более жёсткими условиями работы оборудования, увеличением расходов на компримирование, расширением пределов взрываемости паро-газовой смеси над реакционной массой. На практике работают с давлением 0,3-0,5 МПа.

    Время реакции определяется значением оптимальной конверсии. Увеличение конверсии (соответствующие накоплению ROOH и исчерпыванию RH) приводит в соответствии с уравнением (
    1   ...   4   5   6   7   8   9   10   11   12


    написать администратору сайта