Главная страница
Навигация по странице:

  • Таблица 14-2. Относительная емкость буферов крови , %

  • Буфер Плазма крови Эритроциты

  • Таблица 14-3. Начальные сдвиги и компенсаторные реакции при нарушениях кислотно-основного равновесия

  • Нарушение КОС Начальный сдвиг КОС Реакция компенсации

  • Причина изменения объема дыхания

  • Снижение рН в жидкостях организма

  • Повышение рН в жидких средах организма

  • Рис. 14-1. Реабсорбция HCO 3 в клетках проксимального отдела. КА — карбоангидраза.

  • Секреция фосфатов

  • Образование аммиака

  • Выведение из организма нелетучих кислот

  • Патофиз.Т1. 11.09.2011. Патофиз.Т1. 11.09. Литвицкий Пётр Францевич патофизиология кафедра патофизиологии


    Скачать 4.08 Mb.
    НазваниеЛитвицкий Пётр Францевич патофизиология кафедра патофизиологии
    АнкорПатофиз.Т1. 11.09.2011.doc
    Дата01.02.2017
    Размер4.08 Mb.
    Формат файлаdoc
    Имя файлаПатофиз.Т1. 11.09.2011.doc
    ТипУчебник
    #1627
    страница50 из 88
    1   ...   46   47   48   49   50   51   52   53   ...   88

    Механизмы устранения сдвигов кислотно-основного состояния организма

    Учитывая важность поддержания [H+] в сравнительно узком диапазоне для оптимальной реализации процессов жизнедеятельности, в эволюции сформировались системные, хорошо интегрированные механизмы регуляции этого параметра в организме в норме и устранения его сдвигов при развитии патологии.
    В норме в организме образуются почти в 20 раз больше кислых продуктов, чем основных (щелочных). В связи с этим в нем доминируют системы, обеспечивающие нейтрализацию, экскрецию и секрецию избытка соединений с кислыми свойствами. К этим системам относятся химические буферные системы и физиологические механизмы регуляции КЩР.

    Химические буферные системы

    Химические буферные системы представлены, в основном, бикарбонатным, фосфатным, белковым и гемоглобиновым буферами.
    Буферные системы начинают действовать сразу же при увеличении или снижении [H+], а следовательно, представляют собой первую мобильную и действенную систему компенсации сдвигов рН. Например, буферы крови способны устранить умеренные сдвиги КОС в течение 10–40 с. Емкость и эффективность буферных систем крови весьма высока (таблица 14-2).

    Таблица 14-2. Относительная емкость буферов крови, %

    Буфер

    Плазма крови

    Эритроциты

    Гидрокарбонатный

    35

    18

    Гемоглобиновый



    35

    Белковый

    7



    Фосфатный

    1

    4

    Общая емкость

    43

    57
    Принцип действия химических буферных систем заключается в трансформации сильных кислот и сильных оснований в слабые. Эти реакции реализуются как внутри- так и внеклеточно (в крови, межклеточной, спинномозговой и других жидких средах), но в наибольшем масштабе — в клетках.

    Гидрокарбонатная буферная система

    Гидрокарбонатная буферная система — основной буфер крови и межклеточной жидкости. Она составляет около половины буферной емкости крови и более 90% — плазмы и интерстициальной жидкости. Гидрокарбонатный буфер внеклеточной жидкости состоит из смеси угольной кислоты H2ÑO3 и гидрокарбоната натрия NaHCO3. В клетках в состав соли угольной кислоты входят калий и магний.
    Гидрокарбонатный буфер — система открытого типа, она ассоциирована с функцией внешнего дыхания и почек. Система внешнего дыхания поддерживает оптимальный уровень рCO2 крови (и как следствие — концентрацию H2CO3), а почки — содержание аниона HCO3. Именно это обеспечивает функционирование системы HCO3/H2CO3 в качестве эффективного и емкого буфера внеклеточной среды даже в условиях образования большого количества нелетучих кислот (таблица 14-3).

    Таблица 14-3. Начальные сдвиги и компенсаторные реакции при нарушениях кислотно-основного равновесия

    Нарушение КОС

    Начальный сдвиг КОС

    Реакция компенсации

    Дыхательный ацидоз

     pH,  pCO2

     HCO3

    Дыхательный алкалоз

     pH,  pCO2

     HCO3

    Негазовый ацидоз

     pH,  HCO3

     pCO2

    Негазовый алкалоз

     pH,  HCO3

     pCO2
    Гидрокарбонатную буферную систему используют как важный диагностический показатель состояния КЩР организма в целом.

    Фосфатная буферная система

    Фосфатная буферная система играет существенную роль в регуляции КЩР внутри клеток, особенно канальцев почек. Это обусловлено более высокой концентрацией фосфатов в клетках в сравнении с внеклеточной жидкостью (около 8% общей буферной емкости). Фосфатный буфер состоит из двух компонентов: щелочного — Na2HPO4, и кислого — (NaH2PO4).
    Эпителий канальцев почек содержит компоненты буфера в максимальной концентрации, что обеспечивает его высокую мощность. В крови фосфатный буфер способствует поддержанию («регенерации») гидрокарбонатной буферной системы. При увеличении уровня кислот в плазме крови (содержащей и гидрокарбонатный, и фосфатный буфер) увеличивается концентрация H2CO3 и уменьшается содержание NaHCO3:
    H2CO3 + Na2HPO4 NaHCO3 + NaH2PO4.
    В результате избыток угольной кислоты устраняется, а уровень NaHCO3 возрастает.

    Белковая буферная система

    Белковая буферная система — главный внутриклеточный буфер. Он составляет примерно три четверти буферной емкости внутриклеточной жидкости.
    Компонентами белкового буфера являются слабодиссоциирующий белок с кислыми свойствами (белок COOH) и соли сильного основания (белок COONa). При нарастании уровня кислот они взаимодействуют с солью белка с образованием нейтральной соли и слабой кислоты. При увеличении концентрации оснований реакция их происходит с белком с кислыми свойствами. В результате вместо сильного основания образуется слабоосновная соль.

    Гемоглобиновая буферная система

    Гемоглобиновая буферная система — наиболее емкий буфер крови — составляет более половины всей ее буферной емкости. Гемоглобиновый буфер состоит из кислого компонента — оксигенированного Hb — HbO2 и основного — неоксигенированного. HbO2 примерно в 80 раз сильнее диссоциирует с отдачей в среду H+, чем Hb. Соответственно, он больше связывает катионов, главным образом K+.
    Основная роль гемоглобиновой буферной системы заключается в ее участии в транспорте CO2 от тканей к легким.
    В капиллярах большого круга кровообращения HbO2 отдает кислород. В эритроцитах CO2 взаимодействует с H2O и образуется H2CO3. Эта кислота диссоциирует на HCO3 и H+, который соединяется с Hb. Анионы HCO3из эритроцитов выходят в плазму крови, а в эритроциты поступает эквивалентное количество анионов Cl. Остающиеся в плазме крови ионы Na+ взаимодействуют с HCO3 и благодаря этому восстанавливают ее щелочной резерв.
    В капиллярах легких, в условиях низкого pСО2 и высокого pО2, Hb присоединяет кислород с образованием HbO2. Карбаминовая связь разрывается, в связи с чем высвобождается CO2. При этом, HCO3 из плазмы крови поступает в эритроциты (в обмен на ионы Cl) и взаимодействует с H+, отщепившимся от Hb в момент его оксигенации. Образующаяся H2CO3 под влиянием карбоангидразы расщепляется на CO2 и H2O. CO2 диффундирует в альвеолы и выводится из организма.

    Карбонаты костной ткани

    Карбонаты костной ткани функционируют как депо для буферных систем организма. В костях содержится большое количество солей угольной кислоты: карбонаты кальция, натрия, калия и др. При остром увеличении содержания кислот (например, при острой сердечной, дыхательной или почечной недостаточности, шоке, коме и других состояниях) кости могут обеспечивать до 30–40% буферной емкости. Высвобождение карбоната кальция в плазму крови способствует эффективной нейтрализации избытка H+. В условиях хронической нагрузки кислыми соединениями (например, при хронической сердечной, печеночной, почечной, дыхательной недостаточности) кости могут обеспечивать до 50% буферной емкости биологических жидкостей организма.

    Физиологические механизмы

    Наряду с мощными и быстродействующими химическими системами в организме функционируют органные механизмы компенсации и устранения сдвигов КОС. Для их реализации и достижения необходимого эффекта требуется больше времени — от нескольких минут до нескольких часов. К наиболее эффективным физиологическим механизмам регуляции КОС относят процессы, протекающие в легких, почках, печени и ЖКТ.

    Легкие

    Легкие обеспечивают устранение или уменьшение сдвигов КОС путем изменения объема альвеолярной вентиляции. Это достаточно мобильный механизм — уже через 1–2 мин после изменения объема альвеолярной вентиляции компенсируются или устраняются сдвиги КОС.
    Причина изменения объема дыхания заключается в прямом или рефлекторном изменении возбудимости нейронов дыхательного центра.
    Снижение рН в жидкостях организма (плазма крови, ликвор) является специфическим рефлекторным стимулом увеличения частоты и глубины дыхательных движений. Вследствие этого легкие выделяют избыток CO2 (образующийся при диссоциации угольной кислоты). В результате содержание H+ (HCO3 + H+ = H2CO3  H2O + CO2) в плазме крови и других жидкостях организма снижается.
    Повышение рН в жидких средах организма снижает возбудимость инспираторных нейронов дыхательного центра. Это приводит к уменьшению альвеолярной вентиляции и выведению из организма CO2, т.е. к гиперкапнии. В связи с этим в жидких средах организма возрастает уровень угольной кислоты, диссоциирующей с образованием H+, — показатель рН снижается.
    Следовательно, система внешнего дыхания довольно быстро (в течение нескольких минут) способна устранить или уменьшить сдвиги рН и предотвратить развитие ацидоза или алкалоза: увеличение вентиляции легких в 2 раза повышает рН крови примерно на 0,2; снижение вентиляции на 25% может уменьшить рН на 0,3 0,4.

    Почки

    К главным механизмам уменьшения или устранения сдвигов КОС крови, реализуемых нефронами почек, относят ацидогенез, аммониогенез, секрецию фосфатов и K+,Na+-обменный механизм.
    Ацидогенез. Этот энергозависимый процесс, протекающий в эпителии дистальных отделов нефрона и собирательных трубочек, обеспечивает секрецию в просвет канальцев H+ в обмен на реабсорбируемый Na+ (рис. 14-1).
    Ы верстка! вставить рисунок «рис-14-1» Ы

    Рис. 14-1. Реабсорбция HCO в клетках проксимального отдела. КА — карбоангидраза.
    Ы верстка! вставить рисунок «рис-14-2» Ы

    Рис. 14-2. Секреция H+ клетками канальцев и собирательных трубочек. КА — карбоангидраза.
    Количество секретируемого H+ эквивалентно его количеству, попадающему в кровь с нелетучими кислотами и H2CO3. Реабсорбированный из просвета канальцев в плазму крови Na+ участвует в регенерации плазменной гидрокарбонатной буферной системы (рис. 14-2).
    Аммониогенез, как и ацидогенез, реализует эпителий канальцев нефрона и собирательных трубочек. Аммониогенез осуществляется путем окислительного дезаминирования аминокислот, преимущественно (примерно 2/3) — глютаминовой, в меньшей мере — аланина, аспарагина, лейцина, гистидина. Образующийся при этом аммиак диффундирует в просвет канальцев. Там NH3+ присоединяет ион H+ с образованием иона аммония (NH4+). Ионы NH4+ замещают Na+ в солях и выделяются преимущественно в виде NH4Cl и (NH4)2SO4. В кровь при этом поступает эквивалентное количество гидрокарбоната натрия, обеспечивающего регенерацию гидрокарбонатной буферной системы.
    Секреция фосфатов осуществляется эпителием дистальных канальцев при участии фосфатной буферной системы:
    Na2HPO4 + H2CO3 NaH2PO4 + NaHCO3.
    Образующийся гидрокарбонат натрия реабсорбируется в кровь и поддерживает гидрокарбонатный буфер, а NaH2PO4 выводится из организма с мочой.
    Таким образом, секреция H+ эпителием канальцев при реализации 3 описанных выше механизмов (ацидогенеза, аммониогенеза, секреции фосфатов) сопряжена с образованием гидрокарбоната и поступлением его в плазму крови. Это обеспечивает постоянное поддержание одной из наиболее важных, емких и мобильных буферных систем — гидрокарбонатной и как следствие — эффективное устранение или уменьшение опасных для организма сдвигов КОС.
    К+,Na+-обменный механизм, реализуемый в дистальных отделах нефрона и начальных участках собирательных трубочек, обеспечивает обмен Na+ первичной мочи на K+, выводящийся в нее эпителиальными клетками. Реабсорбированный Na+ в жидких средах организма участвует в регенерации гидрокарбонатной буферной системы. K+,Na+-обмен контролируется альдостероном. Кроме того, альдостерон регулирует (увеличивает) объем секреции и экскреции H+.
    Таким образом, почечные механизмы устранения или уменьшения сдвигов КОС осуществляются путем экскреции H+ и восстановления резерва гидрокарбонатной буферной системы в жидких средах организма.

    Печень

    Печень играет существенную роль в компенсации сдвигов КОС. В ней действуют, с одной стороны, общие внутри- и внеклеточные буферные системы (гидрокарбонатная, белковая и др.), с другой стороны, в гепатоцитах осуществляются различные реакции метаболизма, имеющие прямое отношение к устранению расстройств КОС.
    Синтез белков крови, входящих в белковую буферную систему. В печени образуются все альбумины, а также фибриноген, протромбин, проконвертин, проакцелерин, гепарин, ряд глобулинов и ферментов.
    Образование аммиака, способного нейтрализовать кислоты как в самих гепатоцитах, так и в плазме крови и в межклеточной жидкости.
    Синтез глюкозы из неуглеводных веществ — аминокислот, глицерина, лактата, пирувата. Включение этих органических нелетучих кислот при образовании глюкозы обеспечивает снижение их содержания в клетках и биологических жидкостях. Так, МК, которую многие органы и ткани не способны метаболизировать, в гепатоцитах примерно на 80% трансформируется в H2O и CO2, а оставшееся количество ресинтезируется в глюкозу. Таким образом, лактат превращается в нейтральные продукты.
    Выведение из организма нелетучих кислот — глюкуроновой и серной при детоксикации продуктов метаболизма и ксенобиотиков.
    Экскреция в кишечник кислых и основных веществ с желчью.

    Желудок и кишечник

    Желудок участвует в демпфировании сдвигов КОС, главным образом, путем изменения секреции соляной кислоты: при защелачивании жидких сред организма этот процесс тормозится, а при закислении — усиливается. Кишечник способствует уменьшению или устранению сдвигов КОС посредством:
     секреции кишечного сока, содержащего большое количество гидрокарбоната. При этом в плазму крови поступает H+;
     изменения количества всасываемой жидкости. Это способствует нормализации водного и электролитного баланса в клетках, во внеклеточной и других биологических жидкостях и как следствие — нормализации рН;
     реабсорбции компонентов буферных систем (Na+, K+, Ca2+, Cl, HCO3).
    Поджелудочная железа способствует компенсации сдвигов КОС при помощи гидрокарбоната. Его секреция увеличивается при алкалозах и уменьшается в условиях ацидоза.
    1   ...   46   47   48   49   50   51   52   53   ...   88


    написать администратору сайта