Главная страница

М. В. Ломоносова Кафедра органической химии Помогаев А. И. Краткий курс органической химии учебное пособие


Скачать 2.05 Mb.
НазваниеМ. В. Ломоносова Кафедра органической химии Помогаев А. И. Краткий курс органической химии учебное пособие
АнкорChast_3.doc
Дата05.12.2017
Размер2.05 Mb.
Формат файлаdoc
Имя файлаChast_3.doc
ТипУчебное пособие
#10693
страница5 из 9
1   2   3   4   5   6   7   8   9

2. Химические свойства



Все реакции, характерные для спиртов, можно формально разделить на реакции, протекающие с разрывом связи О-Н, и реакции, в которых происходит разрыв связи С-О. В первом случае, т.е. при разрыве связи О-Н молекула спирта проявляет нуклеофильные или кислотные свойства, во втором случае – электрофильные или основные свойства.

2.1. Кислотно-основные свойства



Подобно воде, спирты являются амфотерными соединениями. Они проявляют кислотные свойства, реагируя как О-Н-кислоты с достаточно сильными основаниями.



По кислотным свойствам спирты немного уступают воде (рКа 16-18), поскольку их сопряженные основания – алкоксид-анионы – менее устойчивы в растворе, чем гидроксид-анион, из-за меньшей сольватации. При этом кислотные свойства спиртов уменьшаются в ряду метанол – первичные спирты – вторичные спирты – третичные спирты по этой же причине: более объемные третичные алкоксид-анионы менее сольватированы, чем вторичные или, тем более, первичные. Введение электроноакцепторных заместителей в молекулу спирта приводит к усилению кислотных свойств, т.к. такие заместители стабилизируют алкоксид-анион, уменьшая отрицательный заряд атома кислорода. Так, например, 2-хлорэтанол является более сильной кислотой, чем этанол, поскольку атом хлора в 2-хлорэтоксид-анионе за счет своего отрицательного индуктивного эффекта уменьшает заряд на атоме кислорода и этот анион становится более устойчивым, чем незамещенный этоксид-анион.



Как кислоты, спирты могут образовывать соли – алкоголяты металлов, реагируя только с сильными основаниями или с активными металлами. Водные растворы щелочей не могут эффективно депротонировать спирты, поскольку вода является более сильной кислотой. Ниже приведены некоторые уравнения реакций, в которых спирты превращаются в соли:





Как основания, спирты могут реагировать только с очень сильными кислотами, поскольку основные свойства выражены не сильно.



2.2. Реакции спиртов с разрывом связи О-Н

2.2.1. Алкилирование спиртов



Как нуклеофилы спирты могут взаимодействовать с алкилгалогенидами. При этом в результате нуклеофильного замещения происходит образование простых эфиров. Поскольку атом водорода в гидроксильной группе замещается на алкильную группу, этот процесс обозначают как алкилирование спиртов.


Однако из-за высокой электроотрицательности атома кислорода нуклеофильность спиртов мала, поэтому алкилированию подвергают не сами спирты, а их алкоголяты, в которых атом кислорода, имеющий отрицательный заряд, естественно, является более нуклеофильным. Так, пропиловый спирт можно метилировать действием на него натрия и последующим взаимодействием пропилата натрия с метилиодидом.



2.2.2. Ацилирование спиртов



Замещение атома водорода в гидроксильной группе молекулы спирта на ацильную группу приводит к ацилированию спирта и превращению его в сложный эфир карбоновой кислоты. Эту процедуру можно осуществить с помощью различных ацилирующих агентов. Одной из реакций ацилирования является этерификация – взаимодействие спирта и карбоновой кислоты в присутствии более сильной кислоты как катализатора. Например, при нагревании бутилового спирта с уксусной кислотой в присутствии серной кислоты образуется бутиловый эфир уксусной кислоты (бутилацетат).



Ацилировать бутиловый спирт можно также производными уксусной кислоты, такими как ее хлорангидрид (ацетилхлорид) или ангидрид (уксусный ангидрид) в соответствии с уравнениями:


ацетилхлорид



уксусный ангидрид
Ацилирование можно также осуществить после предварительного депротонирования спирта, т.е. взаимодействием алкоголята с хлорангидридом или ангидридом карбоновой кислоты:




этилат натрия этилацетат

2.3. Реакции спиртов с разрывом связи С-О




Реакции спиртов с разрывом связи С-О – это реакции замещения гидроксильной группы и реакция дегидратации. Несмотря на высокую полярность связи С-О, спирты являются очень слабыми С-электрофилами, поскольку гидроксид-анион, который должен образоваться при гетеролизе связи С-О, представляет собой сильное основание, и поэтому гидроксильная группа является плохо уходящей группой. Для облегчения разрыва связи С-О гидроксильная группа должна быть превращена в более легко уходящую группу, например, в оксониевую, которая образуется при протонировании спиртов сильными кислотами (см. основные свойства спиртов). При этом связь С-О разрывается гетеролитически с образованием слабо основной воды. Следовательно, заместить гидроксильную группу в молекуле спирта на нуклеофил можно только в сильнокислой среде, так же как и вызвать дегидратацию с образованием алкена.

2.3.1. Замещение гидроксильной группы на галоген



Замещение гидроксильной группы на атом галогена может быть осуществлено нуклеофильным замещением в кислой среде, например, взаимодействием с галогеноводородами или их растворами.


Реакционная способность спиртов в указанной реакции увеличивается в ряду: первичные ‹ вторичные ‹ третичные. Это обусловлено тем, что в этом ряду возрастает устойчивость образующихся при гетеролизе связи С-О карбокатионов. Третичные спирты образуют наиболее устойчивые крабокатионы, т.е. для них разрыв связи С-О в протонированной форме спирта протекает особенно легко.



Замещение гидроксильной группы в молекуле спирта на хлор происходит также при взаимодействии спиртов с такими реагентами, как тионилхлорид, пентахлорид фосфора и другие (см. способы получения галогенопроизводных). Замещение гидроксила на иод осуществляют обычно нагреванием спирта со смесью кристаллического иода и красного фосфора. Все эти превращения представляют собой способы получения галогенопроизводных и были описаны в соответствующей главе.

2.3.2. Образование простых эфиров (межмолекулярная дегидратация)



При нагревании первичных или вторичных спиртов с каталитическим количеством сильной кислоты (например, конц. серной кислоты) происходит образование симметричных простых эфиров в результате нуклеофильного замещения спиртового гидроксила на алкокси-группу по механизму SN2.




Таким образом, в данной реакции одна молекула спирта выступает как электрофильная частица (в виде катиона алкилоксония после протонирования), а другая – как нуклеофильная частица. Эта реакция, как и всегда при нуклеофильном замещении, конкурирует с элиминированием (внутримолекулярной дегидратацией, см. ниже). Как правило, простые эфиры получают при более низкой температуре. При повышении же температуры возрастает роль элиминирования. Так, диэтиловый эфир получаю при нагревании этилового спирта с концентрированной серной кислотой при температуре 140О С, в то время как при 170О С в основном получается этилен.

2.3.3. Внутримолекулярная дегидратация спиртов до алкенов



Эта реакция является обратной по отношению к гидратации алкенов. При действии на спирт каталитического количества сильной кислоты (например, конц. серной кислоты) при достаточно высокой температуре происходит отщепление воды с образованием алкена. Дегидратация, как и дегидрогалогенирование галогенопроизводных, является региоселективной реакцией, поскольку из двух возможных структурных изомеров алкена преимущественно образуется наиболее термодинамически устойчивый алкен в результате отщепления атома водорода от наиболее гидрогенизированного соседнего атома углерода (правило Зайцева). Так, при дегидратации 2-бутанола главным продуктом оказывается 2-бутен (наряду с 1-бутеном).




Дегидратация протекает по механизму мономолекулярного элиминирования (Е1):


Поскольку реакция идет через карбокатионный интермедиат, то по реакционной способности в этой реакции спирты можно расположить в ряд, соответствующий ряду увеличения стабильности карбокатионов: третичные › вторичные › первичные. Так, для дегидратации такого первичного спирта, как этиловый, применяют нагревание до 170 ОС, в то время как 2-пентанол (вторичный спирт) дегидратируется при 90 ОС.

2.4. Окисление и дегидрирование спиртов



Первичные спирты могут быть окислены или дегидрированы до альдегидов, которые в свою очередь окисляются далее в карбоновые кислоты:




В качестве окислителей могут использоваться соединения хрома в высшей степени окисления, такие как оксид хрома (VΙ), дихромат калия в кислой среде. Дегидрирование осуществляют при нагревании на катализаторах, в качестве которых обычно используются такие металлы, как серебро или медь.

Метиловый спирт при окислении дает формальдегид и затем муравьиную кислоту, которая, являясь одновременно и альдегидом, окисляется дальше до диоксида углерода:




Вторичные спирты при окислении или дегидрировании превращаются в кетоны, которые в отличие от альдегидов значительно более устойчивы к дальнейшему окислению.



Хотя альдегиды более чувствительны к дальнейшему окислению, чем кетоны, их можно выделить в качестве продуктов окисления первичных спиртов. Так, например, 1-октанол при умеренном нагревании (не выше 70 ОС) с дихроматом калия в серной кислоте с хорошим выходом превращается в октаналь.



1   2   3   4   5   6   7   8   9


написать администратору сайта