мат мет-лекции-ИНТЕРНЕТ. Математические методы в психологии
Скачать 2.19 Mb.
|
Тема 11 Использование математического аппарата при описании группового поведенияМатематический аппарат может активно использоваться при обработке результатов социометрического, референтометрического и других видов исследований. Ниже в качестве примера дана обработка результатов социометрии. Проведение социометрического исследования строится на постулате, что структуру отношений в коллективе можно выяснить, анализируя выборы партнера для совместной реализации какой-либо деятельности. Такие виды деятельности заранее четко определены и называются социометрическими критериями. Критерии подбираются таким образом, чтобы они отражали взаимоотношения между испытуемыми, создавали условия выбора партнера, предоставляли право выбора любого члена коллектива, интересовали коллектив, описывали конкретные ситуации, были четко сформулированы. При этом социометрические критерии определяет сам психолог с учетом специфики конечной задачи исследования и рода деятельности испытуемых. Проведение исследования строится по следующему алгоритму: Составление опросного листа, с включением вопросов, предусматривающих выбор. Для студенческой среды рекомендуется выбор с включением следующих сфер деятельности: а) учеба, б) труд, в) досуг. Проведение инструктажа изучаемого коллектива. При этом социометрическое исследование можно проводить только в случае, если есть возможность опросить всех членов коллектива. Например, в студенческой группе не следует проводить тестирование, если кто-то из группы сегодня не пришел на занятие и психолог не сможет с ним встретиться в дальнейшем. Осуществление социометрического опроса. Составление социометрической матрицы. Составление социограммы. При этом тестируемые мужского пола обозначаются маленькими треугольниками, а женского пола – кружочками. Подсчет социометрических индексов. Анализ и интерпретация полученных результатов. Опросный лист имеет примерно следующий вид: Опросный лист Фамилия, имя, отчество _________________ группа ____________ I. Учебная деятельность. С кем из студентов вашей группы вы предпочли бы готовиться к экзаменам? 1. ________________ 2. ________________ 3. ________________ II. Трудовая деятельность. С кем из студентов вы пошли бы работать на производственную практику в коммерческую фирму, с условием, что во время практики вам начисляют зарплату, и ее размер зависят от вклада каждого из сотрудников? 1. ________________ 2. ________________ 3. ________________ III. Досуг. С кем из студентов вашей группы вы предпочли бы пойти в турпоход? 1. ________________ 2. ________________ 3. ________________ В опросном листе следует сделать необходимое число выборов (или меньше этого числа). Существует параметрический и непараметрический вариант проведения исследования. В случае параметрического варианта проведения процедуры, при определении количества выборов рекомендуется пользоваться следующим соотношением.
Возможен также непараметрический вариант проведения социометрии, когда каждый член группы может сделать столько выборов, сколько считает необходимым. В нашем примере будет рассмотрен именно вариант непараметрической социометрии – без ограничения количества выборов. Выбор одного и того же сокурсника может повторяться в разных сферах деятельности. В нашем примере предусмотрены только положительные выборы. Но при работе с космонавтами, подводниками, сотрудниками спецподразделений и т. п., допускается использование и отрицательных выборов (отвержений).
Данные опроса заносятся в социометрическую матрицу. В матрице каждому тестируемому отводится одна строчка по горизонтали и одна графа по вертикали. В соответствующих ячейках отмечается количество выборов и общая сумма выборов, сделанных данным респондентом. Клетки по диагонали заштриховываются, так как самовыборы исключаются. Здесь дан пример социоматрицы для группы из 12 человек. Следующий этап – составление социограммы, дающей наглядное раскрытие структуры взаимосвязей в коллективе. Все испытуемые делятся по сумме полученных выборов на несколько страт. Получившие большинство выборов относятся к так называемой группе «звезд», а получившие мало выборов относятся к «отвергаемым». Границы верхней и нижней страт расчитываются по следующей формуле: х – границы доверительного интервала; - среднее количество выборов, приходящихся на одного человека; - выборочное отклонение; t – поправочный коэффициент, учитывающий отличие эмпирического распределения от теоретического (определяется по таблице Сальвоса, данной в приложении). Для определения этих величин надо также произвести дополнительные вычисления. где V- общее количество выборов, сделанных всеми членами группы, а N – число членов группы. где – оценка вероятности быть выбранным в данной группе. где - оценка вероятности оказаться отвергнутым в данной группе. где - отклонение количества полученных индивидами выборов от среднего их числа, приходящегося на одного члена группы; , где - степень отклонения распределения выборов от случайного. Далее иллюстрируется процедура расчетов. В нашем случае V = 50, N = 12. Следующий этап – определение величины t отдельно для правой и левой частей распределения. В левой части таблицы приведены значения для нижней границы доверительного интервала, а в правой – для верхней. Для обеих границ (верхней и нижней) значения даны для трех различных вероятностей допустимой ошибки: p 0,05; p 0,01; p 0,001 Для уровня значимости p 0,05 поправочней коэффициенты t равны –1,62 и 1,67. Данные значения заносятся в формулу вычисления доверительных интервалов: Таким образом, получившие 2 или менее выборов приобретают самый низший социометрический статус, а получившие 7 или более выборов - высший статус. Между «звездами», и «отвергаемыми» располагается страта «принимаемых». Допуская ошибку не более чем на 5 %, можно утверждать, что лидерами являются те, кто получил не менее 7 выборов, а низкий статус – у испытуемых, получивших менее двух выборов. В нашем случае распределение можно провести следующим образом:
В результате мы имеем информацию, необходимую для построения социограммы. 9 4 6 8 2 5 12 1 7 10 11 3 На основе информации содержащейся в матрице определяют социометрические индексы, дающие количественные характеристики отношений каждого члена группы и всей группы в целом.
Вслед за этим проводится интерпретация полученных результатов. ВопросВ каком случае индекс Si может быть отрицательным? ЗаданиеПровести социометрический анализ взаимоотношений в своей учебной группе. |