Биофиз.РЕМИЗОВ. Механика. Акустика глава 4 Некоторые вопросы биомеханики
Скачать 9.74 Mb.
|
§ 7.3. Движение тел в вязкой жидкости. Закон Стокса Вязкость проявляется при движении не только жидкости по трубам, но и тел в жидкости. При небольших скоростях сила сопротивления движущемуся телу в соответствии с уравнением Ньютона пропорциональна вязкости жидкости, скорости движения тела и зависит от размеров тела. Так как невозможно указать общую формулу для силы сопротивления, то ограничимся рассмотрением частного случая. Н аиболее простой формой тела является сфера. Для сферического тела (шарика) зависимость силы сопротивления при его движении в сосуде с жидкостью от перечисленных выше факторов выражается законом Стокса: где r — радиус шарика, v — скорость движения. Этот закон получен в предположении, что стенки сосуда не влияют на движение тела. При падении шарика в вязкой среде (рис. 7.6) на него действуют три силы: а) сила тяжести mg = 4/3 ρπr2g; б) выталкивающая (архимедова) сила FA = mжg = 4/3 pжρr3g, где mж — масса вытесненной шаром жидкости, ρж — ее плотность; в) FTp — сила сопротивления, вычисляемая по формуле (7.13). П ри попадании шарика в вязкую жидкость его скорость уменьшается. Так как сила сопротивления прямо пропорциональна скорости, то и она будет уменьшаться до тех пор, пока движение не станет равномерным. В этом случае (рис. 7.6) и ли в скалярной форме при подстановке соответствующих выражений для сил г де v0 — скорость равномерного движения (падения) шарика. Из (7.14) получаем Формула (7.15) справедлива для движения шарика не только в жидкости, но и в газе. Она может быть использована, в частности, для вычисления времени выпадения пыли в воздухе. Поясним это следующим примером. Для воздуха — среды, в которой взвешены различные частицы пыли, — вязкость η = 0,000175 П. Около 80% пыли, обнаруженной в легких умерших людей, составляют частицы размером от 5 до 0,2 мкм. Если считать пылинки шарообразными, а плотность пыли равной плотности земли (р = 2,5 г/см3), то, вычисляя скорость падения этих пылинок по формуле (7.15), найдем, что ее значения находятся в пределах 0,2— 0,0003 см/с. Для полного выпадения такой пыли в комнате высотой 3 м потребуется около 12 суток при условии полной неподвижности воздуха и отсутствия броуновского движения. § 7.4. Методы определения вязкости жидкости. Клинический метод определения вязкости крови Совокупность методов измерения вязкости называют вискозиметрией, а приборы, используемые для таких целей, — вискозиметрами. Рассмотрим наиболее распространенные методы вискозиметрии. Капиллярный метод основан на формуле Пуазейля и заключается в измерении времени протекания через капилляр жидкости известной массы под действием силы тяжести при определенном' перепаде давлений. Капиллярные вискозиметры различной формы показаны на рис. 7.7, а, б (1 — измерительные резервуары, М1 и М2 — метки, обозначающие границы этих резервуаров, 2 — капилляры, 3 — приемные сосуды). Капиллярный вискозиметр применяется для определения вязкости. Капиллярными вискозиметрами измеряют вязкость от значений 10-5 Па • с, свойственных газам, до значений 104 Па • с, характерных для консистентных смазок. Метод падающего шарика используется в вискозиметрах, основанных на законе Стокса. Из формулы (7.15) находим Таким образом, зная величины, входящие в правую часть этой формулы, и измеряя скорость равномерного падения шарика, можно найти вязкость данной жидкости. Предел измерений вискозиметров с движущимся шариком составляет 6 • 104- 250 Па•с. Применяются также ротационные вискозиметры, в которых жидкость находится в зазоре между двумя соосными телами, например цилиндрами. Один из цилиндров (ротор) вращается, а другой неподвижен. Вязкость измеряется по угловой скорости ротора, создающего определенный момент силы на неподвижном цилиндре, или по моменту силы, действующему на неподвижный цилиндр, при заданной угловой скорости вращения ротора. С помощью ротационных вискозиметров определяют вязкость жидкостей в интервале 1—105 Па • с, т. е. смазочных масел, расплавленных силикатов и металлов, высоковязких лаков и клеев, глинистых растворов и т. п. В ротационных вискозиметрах можно менять градиент скорости, задавая разные угловые скорости вращения ротора. Это позволяет измерять вязкость при разных градиентах и установить зависимость η = f(dv/dx), которая характерна для неньютоновских жидкостей. В настоящее время в клинике для определения вязкости крови используют вискозиметр Гесса с двумя капиллярами. Схема его устройства дана на рис. 7.7, в. Два одинаковых капилляра a1b1 и a2b2 соединены с двумя трубочками 1 и 2. Посредством резиновой груши или втягивая воздух ртом через наконечник 3, поочередно благодаря тройнику с краном 4, заполняют капилляр alb1 и трубочку 1 до отметки 0 дистиллированной водой, а капилляр a2b2 и трубочку 2 до отметки 0 — исследуемой кровью. После этого теми же способами одновременно перемещают обе жидкости до тех пор, пока кровь не достигнет цифры 1, а вода — другой отметки в своей трубке. Так как условия протекания воды и крови одинаковы, то объемы наполнения трубок 1 и 2 будут различными вследствие того, что вязкости этих жидкостей неодинаковы. Хотя кровь и является неньютоновской жидкостью, используем с некоторым приближением формулу Пуазейля (7.8) и запишем очевидную пропорцию: У читывая, что общий объем V жидкости при равномерном ее течении связан с Q формулой V = Qt, где t — время истечения жидкости, вместо (7.16) получаем где VK — объем крови в трубке 2 от отметки 0 до отметки 1; VB — объем воды в трубке от отметки 0 до отметки, полученной при измерении; ηк и ηв — соответственно вязкость крови и воды. Отношение вязкости крови к вязкости воды при той же температуре называют относительной вязкостью крови. В вискозиметре Гесса объем крови всегда одинаков, а объем воды отсчитывают по делениям на трубке 1, поэтому непосредственно получают значение относительной вязкости крови. Для удобства втсчета сечения трубок 1 и 2 делают различными так, что, несмотря на разные объемы крови и воды, их уровни в трубках будут примерно одинаковы. Вязкость крови человека в норме 4—5 мПа • с при патологии колеблется от 1,7 до 22,9 мПа * с, что сказывается на скорости оседания эритроцитов (СОЭ). Венозная кровь обладает несколько большей вязкостью, чем артериальная. При тяжелой физической работе увеличивается вязкость крови. Некоторые инфекционные заболевания увеличивают вязкость крови, другие же, например брюшной тиф и туберкулез, — уменьшают. § 7.5. Турбулентное течение. Число Рейнольдса Рассмотренное ранее течение жидкости является слоистым, или ламинарным. Увеличение скорости течения вязкой жидкости вследствие неоднородности давления по поперечному сечению трубы создает завихрения, и движение становится вихревым, или турбулентным. При турбулентном течении скорость частиц в каждом месте непрерывно и хаотически изменяется, движение является нестационарным. Х арактер течения жидкости по трубе зависит от свойств жидкости, скорости ее течения, размеров трубы и определяется числом Рейнольдса: где рж — плотность жидкости, D — диаметр трубы, v — средняя по сечению трубы скорость течения. Если число Рейнольдса больше некоторого критического (Re > \ > ReKp), то движение жидкости турбулентное. Например, для гладких цилиндрических труб ReKp ≈ 2300. Т ак как число Рейнольдса зависит от вязкости и плотности жидкости, то удобно ввести их отношение, называемое кинематической вязкостью: И спользуя это понятие, число Рейнольдса можно выразить в виде Единицей кинематической вязкости является квадратный метр в секунду (м2/с), в системе СГС — стоке (Ст); соотношение между ними: 1 Ст = 10-4 м2/с. Кинематическая вязкость полнее, чем динамическая, учитывает влияние внутреннего трения на характер течения жидкости или газа. Так, вязкость воды приблизительно в 100 раз больше, чем воздуха (при 0 °С), но кинематическая вязкость воды в 10 раз меньше, чем воздуха, и поэтому вязкость сильнее влияет на характер течения воздуха, чем воды. Как видно из (7.17), характер течения жидкости или газа существенно зависит от размеров трубы. В широких трубах даже при сравнительно небольших скоростях может возникнуть турбулентное движение. Так, например, в трубке диаметром 2 мм течение воды становится турбулентным при скорости более 127 см/с, а в трубе диаметром 2 см — уже при скорости примерно 12 см/с (температура 16 °С). Течение крови по такой трубе стало бы турбулентным при скорости 50 см/с, но практически в кровеносных сосудах диаметром 2 см возникает вблизи клапанов сердца. При патологии, когда вязкость бывает меньше нормы, число Рейнольдса может превышать критическое значение и движение станет турбулентным. Турбулентное течение связано с дополнительной затратой энергии при движении жидкости, что в случае крови приводит к добавочной работе сердца. Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболеваний. Этот шум прослушивают на плечевой артерии при измерении давления крови. Течение воздуха в носовой полости в норме ламинарное. Однако при воспалении или каких-либо других отклонениях от нормы оно может стать турбулентным, что повлечет дополнительную работу дыхательных мышц. Число Рейнольдса является критерием подобия. При моделировании гидро- и аэродинамических систем, в частности кровеносной системы, модель должна иметь такое же число Рейнольдса, как и натура, в противном случае не будет соответствия между ними. Это относится также и к моделированию обтекания тел при слежении их в жидкости или газе. Из (7.17) видно, что уменьшение размеров модели по сравнению с натурой должно быть скомпенсировано увеличением скорости течения или уменьшением кинематической вязкости модельной жидкости или газа. § 7.6. Особенности молекулярного строения жидкостей Обычные жидкости изотропны, структурно они являются аморфными телами. Для внутреннего строения жидкостей характерен ближний порядок в расположении молекул (упорядоченное расположение ближайших частиц). Расстояния между молекулами невелики, силы взаимодействия значительны, что приводит к 1 малой сжимаемости жидкостей: небольшое уменьшение расстояния между молекулами вызывает появление больших сил межмолекулярного отталкивания. Подобно твердым телам, жидкости мало сжимаемы и обладают большой плотностью, подобно газам, принимают форму сосуда, в котором находятся. Такой характер свойств жидкостей связан с особенностями теплового движения их молекул. В газах молекулы движутся беспорядочно, на малых отрезках пути — поступательно, в расположении частиц отсутствует какой-либо порядок. В кристаллических телах частицы колеблются около определенных положений равновесия — узлов кристаллической решетки. По теории Я. И. Френкеля молекулы жидкости, подобно частицам твердого тела, колеблются около положений равновесия, однако эти положения равновесия не являются постоянными. По истечении некоторого времени, называемого временем «оседлой жизни», молекула скачком переходит в новое положение равновесия на расстояние, равное среднему расстоянию между соседними молекулами. Вычислим среднее расстояние между молекулами жидкости. Можно мысленно представить весь объем жидкости разделенным на небольшие одинаковые кубики с ребром 8. Пусть в среднем в каждом кубике находится одна молекула. В этом случае 5 можно рассматривать как среднее расстояние между молекулами жидкости. Объем жидкости равен V = δ3N, где N — общее количество молекул жидкости. Если n — концентрация молекул (количество молекул в 1 м3), то N = nV. Из этих уравнений получаем Порядок величины 5 составляет 10 -10 м, например, для воды δ= 3 • 10-10 м. Среднее время «оседлой жизни» молекулы называют временем, релаксации τ. С повышением температуры и понижением давления время релаксации сильно уменьшается, что обусловливает большую подвижность молекул жидкости и меньшую ее вязкость. Д ля того чтобы молекула жидкости перескочила из одного положения равновесия в другое, должны нарушиться связи с окружавшими ее молекулами и образоваться связи с новыми соседями. Процесс разрыва связей требует затраты энергии Еа (энергии активации), выделяемой при образовании новых связей. Такой переход молекулы из одного положения равновесия в другое является переходом через потенциальный барьер высотой Еа. Энергию для преодоления потенциального барьера молекула получает за счет энергии теплового движения соседних молекул. Зависимость времени релаксации от температуры жидкости и энергии активации выражается формулой, вытекающей из распределения Больцмана (см. § 2.4). Где τ0 — средний период колебаний молекулы около положения равновесия. З ная среднее перемещение молекулы, равное расстоянию между молекулами δ, и среднее время τ, можно определить среднюю скорость движения молекул в жидкости: Эта скорость мала по сравнению со средней скоростью движения молекул в газе. Так, например, для молекул воды она в 20 раз меньше, чем для молекул пара при той же температуре. § 7.7. Поверхностное натяжение На поверхностях раздела жидкости и ее насыщенного пара, двух несмешиваемых жидкостей, жидкости и твердого тела возникают силы, обусловленные различным межмолекулярным взаимодействием граничащих сред. Каждая молекула, расположенная внутри объема жидкости, равномерно окружена соседними молекулами и взаимодействует с ними, но равнодействующая этих сил равна нулю. На молекулу, находящуюся вблизи границы двух сред, вследствие неоднородности окружения действует сила, не скомпенсированная другими молекулами жидкости. Поэтому для перемещения молекул из объема в поверхностный слой необходимо совершить работу. Поверхностное натяжение (коэффициент поверхностного натяжения) определяется отношением работы, затраченной на создание некоторой поверхности жидкости при постоянной температуре, к площади этой поверхности: Условием устойчивого равновесия жидкостей является минимум энергии поверхностного слоя, поэтому при отсутствии внешних сил или в состоянии невесомости жидкость стремится иметь Минимальную площадь поверхности при данном объеме и принимает форму шара. Поверхностное натяжение может быть определено не только энергетически. Стремление поверхностного слоя жидкости сократиться означает наличие в этом слое касательных сил — сил поверхностного натяжения. Если выбрать на поверхности жидкости некоторый отрезок длиной l (рис. 7.8), то можно условно изобразить эти силы стрелками, перпендикулярными отрезку. Поверхностное натяжение равно отношению силы поверхностного натяжения к длине отр езка, на котором действует эта сила: Из школьного курса физики известно, что оба определения, (7.21) и (7.22), тождественны. Приведем значения поверхностного натяжения для некоторых жидкостей при температуре 20 °С ((табл. 15). Таблица 15
Поверхностное натяжение зависит от температуры. Вдали от критической температуры значение его убывает линейно при увеличении температуры. Снижения поверхностного натяжения Можно достигнуть введением в жидкость поверхностно-активных веществ, уменьшающих энергию поверхностного слоя. § 7.8. Смачивание и несмачивание. Капиллярные явления На границе соприкосновения различных сред может наблюдаться смачивание или несмачивание. На рисунках показана капля жидкости на поверхности другой, не смешивающейся с ней жидкости (рис. 7.9) и на поверхности твердого тела (рис. 7.10 и 7.11). На поверхностях раздела каждых двух сред (1 и 3, 2 и 1, 3 и 2) действуют силы поверхностного натяжения (показаны стрелками). Если эти силы разделить на длину окружности капли (границы трех сред), то получим соответственно σ13, σ21, σ32. Угол θ между смачиваемой поверхностью и касательной к поверхности жидкости, отсчитываемый через нее, называют краевым. За меру смачивания принимают величину Е сли σ32 < σ13 (см. рис. 7.10), то θ < πr/2, и жидкость смачивает твердое тело, поверхность которого в этом случае называется гидрофильной. В случае σ32 < σ13 (см. рис. 7.11) θ > π/2, жидкость не смачивает тело, поверхность его в этом случае называют гидрофобной. Несмачивающая жидкость не протекает через малые отверстия в твердом теле. При |σ32 — σ13 |> σ21 краевой угол определить нельзя, так как cos θ не может быть больше единицы. В этом случае капля растекается по поверхности твердого тела до тех пор, пока не покроет всей его поверхности или пока не образуется мономолекулярный слой. Такой случай является идеальным смачиванием. К нему с некоторым приближением можно отнести растекание спирта или воды по чистой поверхности стекла, нефти по воде и пр. Под действием сил поверхностного натяжения поверхностный слой жидкости искривен и оказывает дополнительное по отношению к внешнему давление ∆р. Поверхностный слой подобен упругой оболочке, например резиновой пленке. Результирующая cил поверхностного натяжения искривленной поверхности направлена в сторону вогнутости (к центру кривизны). В случае сферической поверхности, радиус кривизны которой r, дополнительное давление Искривление поверхности (мениск), в частности, возникает в узких (капиллярных) трубках в результате смачивания или несмачивания жидкостью их поверхности. При смачивании образуется вогнутый мениск (рис. 7.12). Силы давления направлены от жидкости наружу, т. е. вверх, и обусловливают подъем жидкости в капилляре. Это равновесное состояние, показанное на рисунке, наступает тогда, когда давление pgh уравновесит ∆р. Из рис. 7.12 видно, что r =R/cos θ , где R — радиус капилляра. Поэтому [(см. (7.24)] получаем тогда откуда высота поднятия жидкости в капилляре Т . е. зависит от свойств жидкости и материала капилляра, а также от его радиуса. В случае несмачивания cos θ < 0 и формула (7.26) покажет высоту опускания жидкости в капилляре. Капиллярные явления определяют условия конденсации паров, кипения жидкостей, кристаллизации и т. п. Так, например, на молекулупара (рис. 7.13; точка А) над вогнутым мениском жидкости действует больше молекул жидкости и, следовательно, большая сила, чем при выпуклом мениске (показаны стрелками). Это видно из рис. 7.13, на котором штриховыми линиями условно показаны сферы молекулярного действия, а заштрихованные участки — объемы жидкости, молекулы которых притягивают выделенную молекулу пара. В результате этого возникает капиллярная конденсация в смачиваемых тонких трубках даже при сравнительно малой влажности воздуха. Благодаря этому пористые вещества могут задерживать значительное количество жидкости из паров, что приводит к увлажнению белья, ваты в сырых помещениях, затрудняет сушку гигроскопических тел, способствует удержанию влаги в почве и т. п. Наоборот, несмачивающие жидкости не проникают в пористые тела. С этим связана, например, непроницаемость для воды перьев птиц, смазанных жиром. Рассмотрим поведение пузырька воздуха, находящегося в капилляре с жидкостью. Если давление жидкости на пузырек с разных сторон одинаково, то оба мениска пузырька будут иметь одинаковый радиус кривизны, и силы дополнительного давления будут уравновешивать друг друга F1 = -F2 (рис. 7.14, а). При избыточном давлении с одной из сторон, например при движении жидкости, мениски деформируются, изменятся их радиусы кривизны (рис. 7.14, б), дополнительное давление ∆р с разных сторон станет неодинаковым. Это приведет к такому воздействию на жидкость со стороны пузырька воздуха (газа), которое затруднит или прекратит движение жидкости. Такие явления могут происходить в кровеносной системе человека. Попавшие в кровь пузырьки воздуха могут закупорить мелкий сосуд и лишить кровоснабжения какой-либо орган. Это явление, называемое эмболией, может привести к серьезному функциональному расстройству или даже летальному исходу. Так, воздушная эмболия может возникнуть при ранении крупных вен: проникший в ток крови воздух образует воздушный пузырь, пре ствующий прохождению крови. Пузырьки воздуха не должны попадать в вены при внутривенных вливаниях. Газовые пузырьки в крови могут появиться у водолазов при быстром подъеме с большой глубины на поверхность, у летчиков космонавтов при разгерметизировании кабины или скафандра на большой высоте (газовая эмболия). Это обусловлено переходом азов крови из растворенного состояния в свободное — газообразное — в результате понижения окружающего атмосферного давления. Ведущая роль в образовании газовых пузырьков при уменьшении давления принадлежит азоту, так как он обусловливает основную часть общего давления газов в крови и не участвует газообмене организма и окружающего воздуха. ГЛАВА 8 Механические свойства твердых тел и биологических тканей Характерным признаком твердого тела является способность сохранять форму. Твердые тела можно разделить на кристаллические и аморфные. Так же как и в гл. 7, рассматриваемый материал имеет отношение к реологии и биореологии. |