Главная страница
Навигация по странице:

  • § 8.4. Механические свойства биологических тканей

  • Биофиз.РЕМИЗОВ. Механика. Акустика глава 4 Некоторые вопросы биомеханики


    Скачать 9.74 Mb.
    НазваниеМеханика. Акустика глава 4 Некоторые вопросы биомеханики
    АнкорБиофиз.РЕМИЗОВ.doc
    Дата08.12.2017
    Размер9.74 Mb.
    Формат файлаdoc
    Имя файлаБиофиз.РЕМИЗОВ.doc
    ТипДокументы
    #10792
    страница12 из 41
    1   ...   8   9   10   11   12   13   14   15   ...   41
    § 8.3. Механические свойства твердых тел

    Изменение взаимного расположения точек тела, которое приводит к изменению его формы и размеров, называют деформацией. Деформации могут быть вызваны внешними воздействиями (механическими, электрическими или магнитными) или изменение температуры тела. Здесь рассматриваются деформации, возникающие при действии сил на тело.

    В твердых телах деформацию называют упругой, если после прекращения действия силы она исчезает. Если же деформация сохраняется и после прекращения внешнего воздействия, то ее называют пластической. Промежуточный случай, т, е. неполное исчезновение деформации, принято называть упругопластической деформацией.

    Наиболее простым видом деформации является растяжение (сжатие). Оно, например, возникает в стержне (рис. 8.11) при действии силы, направленной вдоль его оси. Если стержень дли­нной I при этом удлинился на ∆1, то е = ∆l/l является мерой деформации растяжения и называется относительным удлинением. Другим видом деформации является сдвиг (рис. 8.12).

    Сила, касательная к одной из граней прямоугольного параллелепипеда,

    вызывает его деформацию, превращая в косоугольный параллеле­пипед (см. штриховые линии на рисунке). Угол у называют углом сдвига, a tg γ — относительным сдвигом. Так как обычно угол у мал, то можно считать tg γ = γ.

    При действии на тело внешней деформирующей силы расстоя­ние между атомами (ионами) изменяется. Это приводит к возник­новению внутренних сил, стремящихся вернуть атомы (ионы) в первоначальные положения. Мерой этих сил является механиче­ское напряжение (или просто напряжение).

    Непосредственно напряжение не измеряется. В ряде случаев его можно вычислить через внешние силы, действующие на тело. Косвенно напряжение можно определить по некоторым физиче­ским эффектам (см., например, § 20.5).

    Применительно к деформации растяжения напряжение а мож­но выразить как отношение силы к площади поперечного сечения стержня (см. рис. 8.11, б):

    Для деформации сдвига напряжение т выражают как отношение силы к площади грани, к которой сила касательна (см. рис. 8.12, б). В этом случае τ называют касательным напряжением:

    Упругие деформации подчиняются закону Гука, согласно кото­рому напряжение пропорционально деформации. Для двух рас­смотренных случаев (растяжение-сжатие и сдвиг) это аналитиче­ски записывается так:

    где Е — модуль Юнга, a G — модуль сдвига.

    Экспериментальная кривая растяжения приведена на рис. 8.13. Участок ОА соответствует упругим деформациям, точка В — преде­лу упругости, характеризующему то максимальное напряжение, при котором еще не имеют места деформации, остающиеся в теле после снятия напряжения (остаточные деформации). Горизонталь­ный участок CD кривой растяжения соответствует пределу теку­чести — напряжению, начиная с которого деформация возрастает без увеличения напряжения. И наконец, напряжение, определяемое наибольшей нагрузкой, выдерживаемой перед разрушением, является пределом прочности.

    Между упругими свойствами кристаллических мономеров и полимерных материалов существует огромная и принципиальная разница, например, в пределах прочности сталь разрывается уже

     

    при растяжении на 0,3%, а мягкие резины можно растягивать до,300%. Это связано с качественно другим механизмом упругос­ти высокомолекулярных соединений.

    Как уже говорилось, при деформации кристаллических твер­дых тел, например стали, силы упругости всецело определяются, изменением межатомных расстояний. Структура высокомолеку­лярных соединений не регулярна. Они состоят из очень длинных гибких молекул, которые причудливо изогнуты, части молекул находятся в хаотическом тепловом движении так, что их форма и длина все время изменяются. Но в каждый данный момент боль­шинство молекул в недеформированном образце имеет длину, близкую к наиболее вероятной. При приложении нагрузки к мате­риалу (рис. 8.14, а) его молекулы выпрямляются в соответствую­щем направлении и длина образца увеличивается (рис. 8.14, б). После снятия нагрузки вследствие хаотического теплового движе­ния длина каждой молекулы восстанавливается и образец укора­чивается.

    Упругость, свойственную полимерам, называют каучукоподобной эластичностью (высокой эластичностью или высокоэластичностью).

    Приведем данные по механическим свойствам некоторых ма­териалов (табл. 16).

    Таблица 16

    Материал

    Модуль Юнга, ГПа

    Предел прочности, МПа

    Сталь

    Капрон стеклонаполненный

    Органическое стекло

    200

     

    8

    3,5

    500

     

    150

    5

     

    Различие между деформацией кристаллических мономеров и полимерных материалов проявляется и во временной ее зависи­мости. Дело в том, что практически все материалы обладают пол­зучестью: под действием постоянной нагрузки происходит их де­формация. В полимерах распрямление молекул при нагрузке ма­териала и скольжение макромолекул происходят более длительно, чем, например, ползучесть в металлах. В какой-то мере при ползу­чести процессы, происходящие в полимере, соответствуют тече­нию вязкой жидкости. Сочетание вязкого течения и высокой элас­тичности позволяет называть деформацию, характерную для по­лимеров, вязкоупругой.

    Упругие и вязкие свойства тел удобно моделировать. Это дает возможность нагляднее представить механические свойства био­логических объектов (см. § 8.4).

    В качестве модели упругого тела (упругой деформации) выбе­рем пружину (рис. 8.15, а), малая деформация которой соответст­вует закону Гука.

    Моделью вязкого тела является поршень с отверстиями, дви­жущийся в цилиндре с вязкой жидкостью (рис. 8.15, б).

    С
    илу сопротивления среды в этом случае примем пропорци­ональной скорости перемещения поршня [см. (5.16)]:

     

    Преобразуем уравнение (8.2), осно­вываясь на аналогии. Вместо силы со­противления запишем напряжение (Fconp → σ), т. е. силу, отнесенную к еди­нице площади, коэффициент трения, характеризующий свойство среды ока­зывать сопротивление движущемуся в ней телу, заменим коэффициентом вяз­кости среды (r → η), смещение тела — относительным удлинением (x → ε). Тог­да вместо (8.2) получим связь между скоростью вязкой деформации и напря­жением:

     


     

    В справедливости (8.3) частично мож­но убедиться проверкой размерностей: σ [Па], η[Па • с], dε/dt[с-1]. Из (8.3) видно, что напряжение зависит не от самой деформации, а от ее ско­рости (скорости перемещения поршня).

    Вязкоупругие свойства тел моделируются системами, состоя­щими из различных комбинаций двух простых моделей: пружина и поршень. Рассмотрим некоторые из них.

    Наиболее простой системой, сочетающей упругие и вязкие свойства, является модель Максвелла, в которой последовательно соединены упругий и вязкий элемент (рис. 8.15, в).

    При воздействии постоянной силой пружина упруго мгновенно удлиняется до значения, определяемого законом Гука, а поршень движется с постоянной скоростью до тех пор, пока действует си­ла (напряжение). Так реализуется на модели ползучесть материалa.

    Если быстро растянуть модель Максвелла и закрепить это со­стояние, то деформация будет сохраняться. Пружина после быст­рого растяжения начнет сокращаться, вытягивая поршень. Со временем будет происходить релаксация, т. е. уменьшение (рас­слабление) напряжения.

    О
    пишем математически эту модель. Из закона Гука (8.1) сле­дует εупр = σ/E, где εупр — упругая часть общей деформации в мо­дели Максвелла. Скорость этой деформации равна

     

    Скорость вязкой деформации выразим из (8.3):

     


    С
    уммируя (8.4) и (8.5), находим скорость общей (суммарной) деформации модели Максвелла:

     

    Из уравнения (8.6) можно получить временные зависимости как деформации, так и напряжения.

    Если σ= const и dσ/dt = 0 (постоянная сила приложена к мо­дели), то из (8.6) следует

    И
    нтегрируя последнее выражение от начального момента време­ни и нулевой деформации до текущих значений t и ε, получаем

    Это соответствует ползучести (рис. 8.16, а).

    Если ε = const и dε/dt = 0 (поддерживается постоянная деформация), то из (8.6) следует

    Интегрируя последнее выражение от начального момента времени и начального напряжения σ0 до текущих значений t и σ, получаем:

    Это соответствует релаксации напряжения (рис. 8.16, б).

    В рамках модели Максвелла под действием нагрузки происхо­дит, как было показано, быстрое (мгновенное) первоначальное уп­ругое растяжение. В реальных полимерах вязкоупругая деформа­ция обычно происходит сразу же после приложения нагрузки. Поэтому более подходящей может оказаться модель Кельвина — Фойхта, состоящая из параллельно соединенных пружины и по­ршня, нечто вроде амортизатора в автомашине (см. рис. 8.15, г).

    Если мгновенно создать в такой системе напряжение

    приложив постоянную силу, то деформация системы будет воз­растать. Используя (8.1) и (8.3), преобразуем (8.9):

     

    Проинтегрируем последнее выражение от начального момента времени и нулевой деформации до текущих значений t и ε:

     


     

    П
    отенцируя, имеем

     

    Как видно, в рамках модели Кельвина—Фойхта деформация экспоненциально возрастает со временем. При снятии нагрузки (σ = 0 в момент t1 деформация начнет экспоненциально убывать. Оба эти случая показаны на рис. 8.17.

    В полимерах реализуются разные виды деформации: упругая обратимая (модель — пружина), вязкоупругая обратимая (модель Кельвина—Фойхта) и необратимая вязкая (модель — поршень). Сочетание этих трех элементов позволяет создавать модели, наи­более полно отражающие механические свойства тел и, в частнос­ти, биологических объектов.

    Моделирование механических свойств тел широко используется в реологии. Основная задача реологии — это выяснение зависимости напряжения от относительной деформации: σ = f(ε); напряжения от времени (релаксация напряжения): σ = f(t) при ε = const; относи­тельной деформации от времени (ползучесть): ε = f(t) при σ = const.

     

    § 8.4. Механические свойства биологических тканей

    Под механическими свойствами биологических тканей пони­мают две их разновидности. Одна связана с процессами биологи­ческой подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечи­ваются АТФ, их природа рассматривается в курсе биохимии. Ус­ловно указанную группу называют активными механическими свойствами биологических систем. Другая разновидность — пас­сивные механические свойства биологических тел. Рассмотрим этот вопрос применительно к биологическим тканям.

    Как технический объект биологическая ткань — композици­онной материал, он образован объемным сочетанием химически разнородных компонентов. Механические свойства биологиче­ской ткани отличаются от механических свойств каждого компо­нента, взятого в отдельности. Методы определения механических свойств биологических тканей аналогичны методам определения этих свойств у технических материалов.

    Костная ткань. Кость — основной материал опорно-двига­тельного аппарата. В упрощенном виде можно считать, что 2/3 мас­сы компактной костной ткани (0,5 объема) составляет неорганиче­ский материал, минеральное вещество кости — гидроксилапатит ЗСа3(РО4)2 • Са(ОН)2. Это вещество представлено в форме микро­скопических кристалликов. В остальном кость состоит из органи­ческого материала, главным образом коллагена (высокомолеку­лярное соединение, волокнистый белок, обладающий высокоэластичностью). Кристаллики гидроксилапатита расположены между коллагеновыми волокнами (фибриллами).

    Плотность костной ткани 2400 кг/м3. Ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуаль­ных условий роста организма и, конечно, от участка организма.

    Композиционное строение кости придает ей нужные механиче­ские свойства: твердость, упругость и прочность. Зависимость σ = = f(ε) для компактной костной ткани имеет характерный вид, по­казанный на рис. 8.18, т. е. подобна аналогичной зависимости для твердого тела (см. рис. 8.13); при небольших деформациях выполняется закон Гука. Модуль Юнга около 10 ГПа, предел про­чности 100 МПа. Полезно эти данные сопоставить с данными для капрона, армированного стеклом (см. табл. 16, заметно хорошее соответствие).

    Примерный вид кривых ползучести компактной костной тка­ни приведен на рис. 8.19. Участок 0А соответствует быстрой де-

     

    формации, АВ — ползучести. В момент t1 соответствующий точ­ке В, нагрузка была снята. ВС соответствует быстрой деформации сокращения, CD — обратной ползучести. В результате даже за - длительный период образец кости не восстанавливает своих прежних размеров, сохраняется некоторая остаточная деформация εост.

    Этой зависимости приближенно соответствует модель (рис. 8.20, а), сочетающая последовательное соединение пружины с моделью Кельвина—Фойхта. Временная зависимость относительной деформации показана на рис. 8.20, б. При действии постоян- ной нагрузки мгновенно растягивается пружина 1 (участок ОА), затем вытягивается поршень (ползучесть АВ), после прекращения нагрузки происходит быстрое сжатие пружины 1 (ВС), а пружинa 2 втягивает поршень в прежнее положение (ползучесть CD). В предложенной модели не предусматривается остаточная деформация.

    Схематично можно заключить, что минеральное содержимое и кости обеспечивает быструю деформацию, а полимерная часть (коллаген) определяет ползучесть.

    Если в кости или в ее механической модели быстро создать постоянную деформацию, то скачкообразно возникает и напряжение (участок ОА на рис. 8.20, в). На модели это означает растяжение пру­жины 1 и возникновение в ней напря­жения. Затем (участок АВ) эта пру­жина будет сокращаться, вытягивая поршень и растягивая пружину 2, на пряжение в системе будет убывать r (релаксация напражения). Однако даже спустя значительное время сохра­нится остаточное напряжение σост. Для модели это означает, что не возникнет при постоянной деформации такой ситуации, чтобы пружины вернулись в недеформированное состоя ние.

    Кожа. Она состоит из волокон кол­лагена, эластина (так же как и колла­ген, волокнистый белок) и основной ткани — матрицы. Коллаген состав­ляет около 75% сухой массы, а эластин — около 4%. Примерные данные по механическим свойствам приведены в табл. 17.

    Эластин растягивается очень сильно (до 200—300%), пример­но как резина. Коллаген может растягиваться до 10%, что соот­ветствует капроновому волокну.

    Таблица 17

    Материал

    Модуль упругости, МПа

    Предел прочности, МПа

    Коллаген

    Эластин

    10—100

    0,1—0,6

    100

    5

    Из сказанного ясно, что кожа является вязкоупругим материа­лом с высокоэластическими свойствами, она хорошо растягивает­ся и удлиняется.

    Мышцы. В состав мышц входит соединительная ткань, со­стоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров.

    Релаксация напряжения в гладких мышцах соответствует модели Максвелла (см. рис. 8.15, в; 8.16, б). Поэтому гладкие мышцы могут значительно растягиваться без особого напряжения, что способствует увеличению объема полых органов, например мочевого пузыря.

    Механическое поведение скелетной мышцы соответствует мо­дели, представленной на рис. 8.20, а. При быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается до σост (см. рис. 8.20, в).

    Зависимость σ = f(ε) для скелетной мышцы нелинейна (рис. 8.21). Анализ этой кривой показывает, что примерно до ε ≈ 0,25 в порт­няжной мышце лягушки механизм деформации обусловлен рас­прямлением молекул коллагена (см. § 8.3). При большей деформа­ции происходит увеличение межатомных расстояний в молекулах.

    Ткань кровеносных сосудов (сосудистая ткань). Механиче­ские свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Со­держание этих составляющих сосудистой ткани изменяется по хо­ду кровеносной системы: отношение эластина к коллагену в общей сонной артерии 2:1, а в бедренной артерии 1:2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они уже являются основной составляющей сосудистой ткани.

    При детальном исследовании механических свойств сосудис­той ткани различают, каким образом вырезан из сосуда образец (вдоль или поперек сосуда). Можно, однако, рассматривать де­формацию сосуда в целом как результат действия давления из­нутри на упругий цилиндр.
     

     

     

     

     

    Рассмотрим цилиндрическую часть кровеносного сосуда дли­ной l, толщиной h и радиусом внутренней части r. Сечения вдоль и поперек оси цилиндра показаны на рис. 8.22, а, б. Две половины цилиндрического сосуда взаимодействуют между собой по сечени­ям стенок цилиндра (заштрихованные области на рис. 8.22, а). Общая площадь этого «сечения взаимодействия» равна 2hl. Если в сосудистой стенке существует механическое напряжение а, то си­ла взаимодействия двух половинок сосуда равна

    Э
    та сила уравновешивается силами давления на цилиндр изнутри (они показаны стрелками на рис. 8.22, б). Силы направлены под разными углами к горизонтальной плоскости (на рисунке). Для того чтобы найти их равнодействующую, следует просуммировать горизонтальные проекции. Однако проще найти равнодействую­щую силу, если умножить давление на проекцию площади полу­цилиндра на вертикальную плоскость ОО'. Эта проекция равна 2rl. Тогда выражение для силы через давление имеет вид

     

    П
    риравнивая (8.10) и (8.11), получаем σ • 2hl = р • 2rl, откуда

     

     


    Это уравнение Ламе.

    Будем считать, что при растяжении сосуда объем его стенки не изменяется (площадь стенки возрастает, а толщина убывает), т. е. не изменяется площадь сечения стенки сосуда (рис. 8.22, б):

    С учетом (8.13) преобразуем (8.12):

     

    Из (8.14) видно, что в капиллярах (r→ 0) напряжение отсутст­вует (σ → 0).

    В заключение отметим разделы и направления медицины, для которых особо важно иметь представление о пассивных механиче­ских свойствах биологических тканей:

    • — — в космической медицине, так как человек находится в но­вых, экстремальных, условиях обитания;

    • — — в спортивной медицине результативность достижений и ее возрастание побуждают портивных медиков обращать внимание на изические возможности опорно-двигательного аппарата человека; механические свойства тканей необходимо учитывать гиги­енистам при защите человека от действия вибраций; в протезировании при замене естественных органов и тка­ней искусственными также важно знать механические свойства и параметры биологических объектов;

    • — — в судебной медицине следует знать устойчивость биологических структур по отношению к различным деформациям;

    • — — в травматологии и ортопедии вопросы механического воз­ действия на организм являются определяющими.

    Этот перечень не исчерпывает значения материала, изложен­ного в настоящей главе, для врачебного образования.

     ГЛАВА 9 Физические вопросы гемодинамики

     

    Гемодинамикой называют область биомеханики, в которой исследуется движение крови по сосудистой системе. Физи­ческой основой гемодинамики является гидродинамика. Те­чение крови зависит как от свойств крови, так и от свойств кровеносных сосудов.

    В главе рассматриваются также физические основы работы некоторых технических устройств, используемых в связи с кровообращением.

    1   ...   8   9   10   11   12   13   14   15   ...   41


    написать администратору сайта