Главная страница
Навигация по странице:

  • § 10.2. Второе начало термодинамики. Энтропия

  • Биофиз.РЕМИЗОВ. Механика. Акустика глава 4 Некоторые вопросы биомеханики


    Скачать 9.74 Mb.
    НазваниеМеханика. Акустика глава 4 Некоторые вопросы биомеханики
    АнкорБиофиз.РЕМИЗОВ.doc
    Дата08.12.2017
    Размер9.74 Mb.
    Формат файлаdoc
    Имя файлаБиофиз.РЕМИЗОВ.doc
    ТипДокументы
    #10792
    страница14 из 41
    1   ...   10   11   12   13   14   15   16   17   ...   41
    § 10.1. Основные понятия термодинамики. Первое начало термодинамики

    Состояние термодинамической системы характеризуется фи­зическими величинами, называемыми параметрами системы (объем, давление, температура, плотность и т. д.).

    Если параметры системы при взаимодействии ее с окружающи­ми телами не изменяются с течением времени, то состояние систе­мы называют стационарным. Примерами таких состояний в те­чение небольшого отрезка времени являются состояние внутрен­ней части работающего домашнего холодильника, состояние тела Человека, состояние воздуха в отапливаемом помещении и т. д.

    В разных частях системы, находящейся в стационарном со­стоянии, значения параметров обычно различаются: температура в разных участках тела человека, концентрация диффундирую­щих молекул в разных частях биологической мембраны и т. п. В системе, таким образом, поддерживаются постоянные градиен­ты некоторых параметров, с постоянной скоростью могут проте­кать химические реакции.

    С
    тационарное состояние поддерживается за счет потоков энер­гии и вещества, проходящих через систему. Схематически на рис. 10.1, а показано стационарное состояние, температура неодина­кова в разных точках системы. Ясно, что в стационарном состоя­нии могут находиться такие системы, которые либо обменивают­ся и энергией, и веществом с окружающими системами (откры­тые системы), либо обмениваются только энергией (закрытые системы).

    Термодинамическая система, которая не обменивается с окружающими телами ни энергией, ни веществом, называет­ся изолированной. Изолированная система со временем прихо­дит в состояние термодинамического равновесия. В этом состоя­нии, как и в стационарном, параметры системы сохраняются не­изменными во времени. Существенно, что в равновесном состоянии параметры, не зависящие от массы или числа частиц (давление, температура и др.), одинаковы в разных частях этой системы.

    Естественно, что любая реальная термодинамическая система не будет изолированной хотя бы потому, что ее невозможно окру­жить оболочкой, не проводящей теплоту. Изолированную систе­му можно рассматривать как удобную термодинамическую мо­дель. Схематически равновесное состояние изолированной систе­мы показано на рис. 10.1, б.

    Рассмотрим подробнее взаимодействие закрытой системы с ок­ружающими телами. Обмен энергией между ними может осу­ществляться в двух различных процессах при совершении работы и при теплообмене.

    Мерой передачи энергии в процессе теплообмена является количество теплоты, а мерой передачи энергии в процессе соверше­ния работы является работа1[1][1].

    Найдем выражение для вычисле­ния работы, совершаемой газом при изменении его объема. Предположим, что газ, находящийся в цилиндриче­ском сосуде под поршнем, изобарно расширяется от V1 до V2 (рис. 10.2), при этом поршень перемещается на расстояние ∆l = l2 – l1, а объем изменя­ется на AV = V2-V1

    На поршень, площадь поперечногосечения которого S, со стороны газа вследствие давления р действует сила F = pS. Так как направле­ние этой силы совпадает с направлением перемещения поршня, то работа, совершаемая газом,

    При расширении газа AF > 0 и работа положительна (∆V > 0); при сжатии ∆V < 0 и А < 0. Заметим, что речь идет о работе, совер­шаемой газом, а не внешними силами. Работа всех внешних сил, наоборот, при расширении газа окажется отрицательной, а при сжатии — положительной.

    Если при изменении объема давление газа изменяется, то сле­дует вычислять элементарную работу, соответствующую доста­точно малому изменению объема dV:

    dA=pdV (10.2)

    П
    роинтегрировав (10.2), получим работу, совершаемую газом:

     

    В
    качестве примера найдем работу идеального газа при изотер­мическом процессе. Для этого подставим в формулу (10.3) вместо давления его выражение из уравнения Менделеева — Клапейрона:

    П
    олучим

    Здесь m — масса газа, М — молярная масса (масса моля), Т — термодинамическая температура, Д = 8,31 Дж/(моль • К) — мо­лярная газовая постоянная.

    Из уравнения (10.3) ясно, что работа, совершаемая газом, гра­фически определяется как площадь криволинейной трапеции в координатах давление — объем (рис. 10.3). Из рисунка, на кото­ром представлены графики двух различных процессов с одинако­вым начальным и конечным состояниями, видно, что работа зави­сит от процесса. Так, работа А1 (рис. 10.3, а) больше, чем работа А2 (рис. 10.3, б).

    З
    акон сохранения энергии для тепловых процессов формули­руется как первое начало термодинамики. Количество тепло­ты, переданное системе, идет на изменение внутренней энер­гии системы и совершение системой работы:

    Под внутренней энергией системы понимают сумму кинети­ческой и потенциальной энергий частиц, из которых состоит сис­тема.

    Внутренняя энергия U является функцией состояния системы и для данного состояния имеет вполне определенное значение; ∆U есть разность двух значений внутренней энергии, соответствую­щих конечному и начальному состояниям системы: ∆U = U2 — U1

    Количество теплоты Q, как и работа, является функцией про­цесса, а не состояния. И количество теплоты, и работу нельзя вы­разить в виде разности двух значений какого-либо параметра в конечном и начальном состояниях. В связи с этим Q и А в (10.6) записаны без знака приращения ∆.

    Для достаточно малых значений Q, А и малых приращений U используют соответственно обозначения δQ, δА и dU, подчерки­вая этим отличие понятий количества теплоты и работы от внут­ренней энергии.

    Ради упрощения в дальнейшем используются одинаковые обо­значения (dQ, dA и dU), однако следует помнить различие этих

    ф
    изических величин. С учетом изложенного первое начало термо­динамики можно записать в виде:

     

    Значения Q, A, ∆U и dQ, dA, dU могут быть как положительными (теплота передается системе внешними телами, внутренняя энер­гия увеличивается, газ расширяется), так и отрицательными (теплота отнимается от системы, внутренняя энергия уменьшает­ся, газ сжимается).

     

    § 10.2. Второе начало термодинамики. Энтропия

    Первое начало термодинамики, являющееся, по существу, вы­ражением закона сохранения энергии, не указывает направления возможного протекания процессов. Так, например, по первому началу термодинамики, при теплообмене одинаково возможным был бы как самопроизвольный переход теплоты от тела более на­гретого к телу менее нагретому, так и, наоборот, от тела менее на­гретого к телу более нагретому. Из повседневного опыта, однако, хорошо известно, что второй процесс в природе нереален; так, на­пример, не может самопроизвольно нагреться вода в чайнике вследствие охлаждения воздуха в комнате. Другой пример: при падении камня на землю происходит его нагревание, эквивалент­ное изменению потенциальной энергии, обратный процесс — са­мопроизвольное поднятие камня только из-за его охлаждения — невозможен.

    Второе начало термодинамики, так же как и первое, является обобщением данных опыта.

    Существует несколько формулировок второго закона термоди­намики: теплота самопроизвольно не может переходить от тела с меньшей температурой к телу с большей температу­рой (формулировка Клаузиуса), или невозможен вечный двига­тель второго рода (формулировка Томсона), т. е. невозможен такой периодический процесс, единственным результатом которого было бы превращение теплоты в работу вслед­ствие о
    хлаждения тела.

    В тепловой машине совершается работа за счет переданной теплоты, но при этом часть теплоты обязательно передается холодильнику. На рис. 10.4 схематически показаны соответственно невозможный (а) и возможный (б), по второму началу, периодиче­ские процессы.

    Рассмотрим некоторые термодинамические понятия, которые позволяют количественно выразить второе начало термодинамики.

    Процесс 1 —2 называют обратимым, если можно совершить обратный процесс 2—1 через все промежуточные состояния так, чтобы после возвращения системы в исходное состояние в окру­жающих телах не произошло каких-либо изменений.

    Обратимый процесс является физической абстракцией. Все ре­альные процессы необратимы хотя бы из-за наличия силы тре­ния, которая вызывает нагревание окружающих тел. Некоторые характерные примеры необратимых процессов: расширение газа в пустоту, диффузия, теплообмен и т. д. Для возвращения систе­мы в начальное состояние во всех этих случаях необходимо совер­шение работы внешними телами.

    Циклом или круговым процессом на­зывают процесс, при котором система возвращается в исходное состояние.


    168



    График цикла представляет собой зам­кнутую линию. Цикл, изображенный на рис. 10.5, — прямой, он соответствует тепловой машине, т. е. устройству, кото­рое получает количество теплоты от неко­торого тела — теплоотдатчика (нагрева­теля), совершает работу и

    отдает часть этой теплоты другому телу — теплоприемнику (холодильнику) (рис. 10.4, б).

    В этом цикле рабочее вещество (газ) в целом совершает положи­тельную работу (рис. 10.5): в процессе 1—а—2 газ расширяется, ра­бота положительна и численно равна площади под кривой 1—а—2; в процессе 2—б—1 работа отрицательна (сжатие газа) и численно равна площади под соответствующей кривой. Алгебраическое сум­мирование дает в целом положительную работу, совершенную газом за цикл. Она численно равна площади, ограниченной замкнутой кривой 1—а—2—б—1.

    Коэффициентом полезного действия тепловой машины или прямого цикла называют отношение совершенной рабо­ты к количеству теплоты, полученному рабочим веществом

    от нагревателя:

    Так как работа тепловой машины совершается за счет количе­ства теплоты, а внутренняя энергия рабочего вещества за цикл не изменяется (AU = 0), то из первого закона термодинамики следу­ет, что работа в круговых процессах равна алгебраической сумме количеств теплоты: A = QX + Q2.

    Следовательно,

    Количество теплоты Qv полученное рабочим веществом, положи­тельно, количество теплоты Q2, отданное рабочим веществом хо­лодильнику, отрицательно.

    Обратный цикл2[2][2] соответствует работе холодильной машины, т. е. такой системе, которая отбирает теплоту от холодильника и передает большее количество теплоты нагревате­лю. Как следует из второго закона термодинамики, этот процесс (рис. 10.6) не может протекать сам собой, он происхо­дит за счет работы внешних тел. При этом газ совершает отрицательную ра­боту: работа сжатия в процессе 2—а—1 отрицательна, работа. В ре­зультате алгебраического расширения в процессе 1—6—2 положительна. В результате суммирова­ния получаем отрицательную работу га­за, численно равную площади, ограни­ченной кривой 2—а—1 —б—2.

    Рассмотрим цикл Карно (рис. 10.7), т. е. круговой процесс, со­стоящий из двух изотерм 1—2, 3—4, которым соответствуют тем­пературы Т1 и Т21 > Т2), и двух адиабат 2—3, 4—1. В этом цик­ле рабочим веществом является идеальный газ. Передача количе­ства теплоты от нагревателя рабочему веществу происходит при температуре T1 а от рабочего вещества к холодильнику — при температуре Т2. Без доказательства укажем, что КПД обратимого цикла Карно зависит только от температур Т1 и Т2 нагревателя и холодильника:

     


    Карно, исходя из второго начала термодинамики, доказал сле­дующие положения: КПД всех обратимых машин, работающих по циклу, состоящему из двух изотерм и двух адиабат, с нагрева­телем при температуре Тг и холодильником при температуре Т2, равны между собой и не зависят от рабочего вещества и конструк­ции машины, совершающей цикл; КПД необратимой машины меньше КПД обратимой машины.

    Эти положения на основании (10.9) и (10.10) можно записать в виде

    где знак «=» относится к обратимому циклу, а знак «<» — к необ­ратимому.

    Это выражение представляет собой количественную формули­ровку второго начала. Покажем, что ее следствием являются обе качественные формулировки, приведенные в начале параграфа.

    Допустим, что происходит теплообмен между двумя телами без совершения работы, т. е. Ql + Q2 = 0. Тогда [см. (10.11)] Т1 - Т2 > 0 и T1 > T2, что соответствует формулировке Клаузиуса: в самопро­извольном процессе теплота передается от тел с более высокой тем­пературой к телам с более низкой.

    В том случае, если тепловая машина полностью затрачивает всю полученную при теплообмене энергию на совершение работы и не отдает энергию холодильнику, Q2 = 0 и из (10.11) имеем

    что невозможно, так как Т1 и Т2 положительны. Отсюда следует формулировка Томсона о невозможности вечного двигателя вто­рого рода. Преобразуем выражение (10.11):

     

     

     

     

    Отношение количества теплоты, полученного или отданного рабочим веществом, к температуре, при которой происходит теп­лообмен, называют приведенным количеством теплоты.

    Поэтому (10.12) можно сформулировать так алгебраическая сумма приведенных количеств теплоты за цикл не больше нуля (в обратимых циклах равна нулю, в необратимых — меньше нуля).

    Если состояние системы изменяется не по циклу Карно, а по некоторому произвольному циклу, то его можно представить в виде совокупности достаточно малых циклов Карно (рис. 10.8). Тогда выражение (10.12) преобразуется в сумму достаточно малых при­веденных количеств теплоты, что в пределе выразится интегралом

    Выражение (10.13) справедливо для любого необратимого (знак «<») или обратимого (знак «=») цикла; dQ/T — элементарная при­веденная теплота. Кружок на знаке интеграла означает, что интег­рирование проводится по замкнутому контуру, т. е. по циклу. 1 Рассмотрим обратимый цикл (см. рис. 10.5), состоящий из двух процессов аи б. Для него справедливо равенство:

     


    На основе (10.13) для обратимых циклов имеем

     


    И
    зменив пределы интегрирования по пути б, получим

     

    Последнее означает, что сумма приведенных количеств тепло­ты цри обратимом переходе системы из одного состояния в другое не зависит от процесса, а для данной массы газа определяется только начальным и конечным состояниями системы. На рис. 10.9 показаны графики различных обратимых процессов (а, б, в), общими для которых являются начальное 1 и конечное 2 состоя­ния. Количество теплоты и работа в этих процессах различны, но сумма приведенных количеств теплоты оказывается одинаковой.

    Физическую характеристику, не зависящую от процесса или перемещения, обычно выражают как разность двух значений не­которой функции, соответствующих конечному и начальному со­стояниям процесса или положениям системы. Так, например, не­зависимость работы силы тяжести от траектории позволяет выра­зить эту работу через разность потенциальных энергий в конечных точках траектории; независимость работы сил электро­статического поля от траекторий заряда позволяет связать эту ра­боту с разностью потенциалов точек поля, являющихся гранич­ными при его перемещении.

    А
    налогично, сумму приведенных количеств теплоты для обра­тимого процесса можно представить как разность двух значений некоторой функции состояния системы, которую называют энт­ропией:

     

     

    где S2 и S1 — энтропия соответственно в конечном 2 и начальном 1 состояниях. Итак, энтропия есть функция состояния систе­мы, разность значений которой для двух состояний равна сумме приведенных количеств теплоты при обратимом переходе систе­мы из одного состояния в другое.

     


     

     

    Если процесс необратим, то равенство (10.15) не выполняется. Пусть дан цикл (рис. 10.10), состоящий из обратимого 2—б—1 и необратимого 1—а—2 процессов. Так как часть цикла необратима, то и весь цикл необратим, поэтому на основании (10.13) запишем

     

     


     

    Согласно (10.15), тогда вместо (10.16) получим , или

     

    Итак, в необратимом процессе сумма приведенных количеств теплоты меньше изменения энтропии. Объединяя правые части (10.15) и (10.17), получаем

    где знак «=» относится к обратимым, а знак «>» — к необрати­мым процессам.

    Соотношение (10.18) получено на основании (10.11) и поэтому также выражает второе начало термодинамики.

    Установим физический смысл энтропии.

    Формула (10.15) дает только разность энтропии, сама же энт­ропия определяется с точностью до произвольной постоянной:

    Если система перешла из одного состояния в другое, то независи­мо от характера процесса — обратимый он или необратимый — изме­нение энтропии вычисляется по формуле (10.15) для любого обрати­мого процесса, происходящего между этими состояниями. Это обус­ловлено тем, что энтропия является функцией состояния системы.

    Разность энтропии двух состояний легко вычисляется в обра­тимом изотермическом процессе:

    где Q — полное количество теплоты, полученное системой в про­цессе перехода из состояния 1 в состояние 2 при постоянной температуре Т. Последнюю формулу используют при вычислении изме­нения энтропии в таких процессах, как плавление, парообразова­ние и т. п. В этих случаях Q — теплота фазового превращения. Если процесс происходит в изолированной системе (dQ = 0), то [см. (10.18)] в обратимом процессе энтропия не изменяется: S2 — S1 = 0, S = const, а в необратимом — возрастает. Это можно проиллюстрировать на примере теплообмена между двумя тела­ми, образующими изолированную систему и имеющими темпера­туру Т1 и Т2 соответственно (Т1 > Т2). Если небольшое количество теплоты dQ переходит от первого тела ко второму, то при этом энтропия первого тела уменьшается на dS1 = dQ/T1, а второго — увеличивается на dS2 = dQ/T2. Так как количество теплоты неве­лико, то можно считать, что температуры первого и второго тел в процессе теплообмена не изменяются. Полное изменение энтро­пии системы положительно:

    следовательно, энтропия изолированной системы возрастает. Ес­ли бы в этой системе происходил самопроизвольный переход теп­лоты от тела с меньшей температурой к телу с большей темпера­турой, то энтропия системы при этом уменьшилась бы:

    а это противоречит (10.18). Таким образом, в изолированной сис­теме не могут протекать такие процессы, которые приво­дят к уменьшению энтропии системы (еще одна формулиров­ка второго начала термодинамики).

    Увеличение энтропии в изолированной системе не будет проис­ходить беспредельно. В рассмотренном выше примере температу­ры тел со временем выровняются, теплопередача между ними прекратится и наступит равновесное состояние (см. § 10.1). В этом состоянии параметры системы будут оставаться неизменными, а энтропия достигнет максимума.

    Согласно молекулярно-кинетической теории, энтропию наибо­лее удачно можно охарактеризовать как меру неупорядоченности расположения частиц системы. Так, например, при уменьшении объема газа его молекулы вынуждены занимать все более опреде­ленные положения одна относительно другой, что соответствует большему порядку в системе, при этом энтропия убывает. Ког­да газ конденсируется или жидкость кристаллизуется при постоянной температуре, то выделяется теплота, энтропия убывает. И в этом случае происходит увеличение порядка в расположении частиц.

    Неупорядоченность состояния системы количественно харак­теризуется термодинамической вероятностью Wтep. Для выясне­ния ее смысла рассмотрим систему, состоящую из четырех частиц газа: а, Ь, с, d (рис. 10.11). Эти частицы находятся в объеме, раз­деленном мысленно на две равные ячейки, и могут свободно в нем перемещаться.

    Состояние системы, определяемое числом частиц в первой и второй ячейках, назовем макросостоянием; состояние системы, определяемое тем, какие конкретно частицы находятся в каждой из ячеек, — микросостоянием. Тогда (рис. 10.11, а) макросостоя­ние — одна частица в первой ячейке и три частицы во второй — осуществляется четырьмя микросостояниями. Макросостояние, соответствующее размещению четырех частиц равномерно по две в каждой ячейке, осуществляется шестью микросостояниями (рис. 10.11,6).

    Термодинамической вероятностью называют число спосо­бов размещения частиц или число микросостояний, реали­зующих данное макросостояние.

    В рассмотренных примерах Wтep = 4 в первом случае и Wтep = 6 во втором. Очевидно, что равномерному распределению частиц по ячейкам (по две) соответствует большая термодинамическая веро­ятность. С другой стороны, равномерное распределение частиц от­вечает равновесному состоянию с наибольшей энтропией. Из те­ории вероятностей ясно, что система, предоставленная самой се­бе, стремится прийти к макросостоянию, которое реализуется наибольшим количеством способов, наибольшим количеством микросостояний, т. е. к состоянию с наибольшей термодинамиче­ской вероятностью.

    Заметим, что если газу предоставить возможность расширять­ся, его молекулы будут стремиться равномерно занять весь воз­можный объем, при этом процессе энтропия увеличивается. Об­ратный процесс — стремление молекул занять лишь часть объема, например половину комнаты, — не наблюдается, этому соответст­вовало бы состояние со значительно меньшей термодинамической вероятностью и меньшей энтропией.

    О
    тсюда можно сделать вывод о связи энтропии с термодинами­ческой вероятностью. Больцман установил, что энтропия линейно связана с логарифмом термодинамической вероятности:

    где k — постоянная Больцмана.

    Второе начало термодинамики — статистический закон, в отличие, например, от первого начала термодинамики или вто­рого закона Ньютона.

    Утверждение второго начала о невозможности некоторых процес­сов, по существу, является утверждением о чрезвычайно малой веро­ятности их, практически — невероятности, т. е. невозможности.

    В космических масштабах наблюдаются существенные откло­нения от второго начала термодинамики, а ко всей Вселенной, так же, как и к системам, состоящим из малого числа молекул, оно неприменимо.

    В заключение еще раз отметим, что если первый закон термо­динамики содержит энергетический баланс процесса, то вто­рой закон показывает его возможное направление. Аналогич­но тому, как второй закон термодинамики существенно дополня­ет первый закон, так и энтропия дополняет понятие энергии.

    1   ...   10   11   12   13   14   15   16   17   ...   41


    написать администратору сайта