Главная страница

МАТЕМАТИКА (углубленный уровень). Реализация требований ФГОС осн. Методическое пособие для учителя Рослова Л. О., Алексеева Е. Е., Буцко Е. В. и др. под ред. Л. О. Рословой. М. Фгбну Институт стратегии развития образования рао


Скачать 2.94 Mb.
НазваниеМетодическое пособие для учителя Рослова Л. О., Алексеева Е. Е., Буцко Е. В. и др. под ред. Л. О. Рословой. М. Фгбну Институт стратегии развития образования рао
Дата29.03.2023
Размер2.94 Mb.
Формат файлаpdf
Имя файлаМАТЕМАТИКА (углубленный уровень). Реализация требований ФГОС осн.pdf
ТипМетодическое пособие
#1024505
страница2 из 9
1   2   3   4   5   6   7   8   9
1.3. Особенности планируемых результатов обучения математике
в 7–9 классах на углублённом уровне

17
Федеральные государственные образовательные стандарты основного общего образования (с изменениями 2021 года), сохраняя преемственность в требованиях к результатам обучения математике, имеют ряд особенностей в направлении личностного развития учащихся, достижения метапредметных и предметных результатов обучения. Эти особенности Стандартов учтены в примерных рабочих программах основного и среднего общего образования по математике углублённого уровня изучения предмета в 7–9 классах.
Особенностью требований Стандартов к результатам в направлении
личностного развития учащихся является акцент на формировании у обучающихся гражданско-патриотических ценностей и их духовно- нравственном воспитании при изучении всех учебных курсов математики.
В Примерной рабочей программе углублённого уровня результаты обучения в этом направлении конкретизированы с учётом учебного предмета
«Математика». Охарактеризуем и обобщим планируемые личностные результаты освоения предметом в 7–9 классах, по акцентируемым и некоторым другим направлениям (табл. 1).
Таблица 1
Личностные результаты
освоения программы учебного предмета «Математика»
Направление
Характеристика
Гражданско
е воспитание
Готовность к выполнению обязанностей гражданина и реализации его прав; сформированность активной гражданской позиции; представление о математических основах функционирования различных структур и процедур общества (выборы, опросы и пр.).
Патриотич
еское воспитание
Осознание российской гражданской идентичности;сформированность уважения к прошлому и настоящему российской математики, ценностного отношения к достижениям российских математиков и российской математической школы; готовность к использованию достижений в других областях науки и сферах жизни.
Духовно-
нравственное
Осознание духовных ценностей российского народа; готовность к оцениванию своего нравственного

18
воспитание
и этического поведения, связанного с практическим применением достижений науки и учёного; осознание личного вклада в построение устойчивого будущего.
Эстетическ
ое воспитание
Осознание эстетики математических закономерностей, объектов, задач и их решений; восприимчивость математических аспектов различных видов искусства.
Экологическ
ое воспитание
Сформированность экологической культуры, пониманиевлияния социально-экономических процессов на состояниеприродной и социальной среды, осознание глобального характера экологических проблем; ориентация на применение математических знаний для решения задач в области окружающейсреды;готовность к планированиюдействий и оценке их возможных последствий для окружающей среды.
Ценности
научного
познания
Понимание математической науки как сферы человеческой деятельности; осознание значимости математики для развития цивилизации; овладение языком математики и математической культурой как средством познания мира; готовность осуществлять проектную и исследовательскую деятельность.
Достижение учащимися планируемых метапредметных результатов, включающих познавательные, регулятивные и коммуникативные универсальные учебные действия (УУД), при изучении всех математических курсов отражают способность и готовность обучающихся использовать УУД для ориентации в реальных жизненных ситуациях, для решения повседневных и нетиповых задач в собственной деятельности или в сотрудничестве. Отметим, что в первую очередь необходимо организовывать деятельность учащихся в направлении формирования познавательных УУД, которые представлены базовыми логическими и исследовательскими действиями и действиями при работе с информацией (табл. 2).
Таблица 2
Универсальные познавательные действия
освоения программы учебного предмета «Математика»

19
Базовые логические действия

выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между ними; формулировать определения понятий; устанавливать существенный признак для классификации, основания для обобщения и сравнения, критерии проводимого анализа;

воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;

выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;

делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;

разбирать доказательства математических утверждений (прямые и от противного), проводить самостоятельно доказательства математических фактов, выстраивать аргументацию, приводить примеры и контрпримеры, применять метод математической индукции; обосновывать собственные рассуждения;

выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).
Базовые исследовательские действия

использовать вопросы как исследовательский инструментпознания; формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;

проводить по самостоятельно составленному плану эксперимент, исследование по установлению особенностей математического объекта, зависимостей объектов между собой;

самостоятельно формулировать обобщения и выводы по результатам проведённого наблюдения, исследования, эксперимента, оценивать достоверность полученных результатов, выводов и обобщений;

прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.
Действия при работе с информацией

выявлять недостаточность и избыточность информации, данных, необходимых для решения задачи;

выбирать, анализировать, систематизировать

20 и интерпретировать информацию различных видов и форм представления;

выбирать форму представления информации и иллюстрировать решаемые задачи схемами, диаграммами, иной графикой и их комбинациями;

оценивать надёжность информации по критериям, предложенным или сформулированным самостоятельно.
Одной из особенностей предметных результатов изучения математики, является их ориентация на применение знаний, умений и навыков обучающимися, не только в учебных ситуациях, но и в реальных жизненных условиях. Кроме этого, предметные результаты изучения математики на углублённом уровне сконцентрированы на свободном оперировании математическими понятиями. Это означает, что у учащихся не только сформированы знания определения понятия и его свойств, умения доказывать изучаемые свойства и признаки понятия, но и умения выявлять и характеризовать связи с другими понятиями, использовать понятие и его свойства при проведении доказательства какого-либо факта или математического отношения, решении задач более высокого уровня сложности.
Отметим, что планируемые результаты обучения математике, соответствующие Стандартам и Примерным рабочим программам ООО на обоих уровнях, ориентированы на формирование готовности применения результатов обучения учебному предмету «Математика» как при решении повседневных привычных или знакомых задач, так и незнакомых, нестандартных задач реальной жизни, т. е. функциональной математической грамотности.
Достижение планируемых результатов обучения всех математических учебных курсов в направлении личностного развития учащихся, метапредметных и предметных результатов обучения требует использования новых подходов в организации образовательного процесса, интеграции

21 формирования функциональной математической грамотности и обновления содержания школьного курса математики. Отметим, что формирование планируемых результатов должно осуществляться в интеграции урочной и внеурочной деятельности по всем учебным курсам. При этом внеурочная деятельность включает не только различные предметные мероприятия, но и учебные модули, сконструированные для расширения и углубления содержания учебных курсов. Обучение всем учебным курсам предмета
«Математика» базируется на системно-деятельностном подходе, как методологической основы Стандартов и Рабочих программ, личностно- ориентированном и дифференцированном подходах. Большое значение в достижении планируемых результатов обучения математике имеет практическая деятельность учащихся.
Таким образом, изучение учебного предмета «Математика» на углублённом уровне направлено на предоставление возможности каждому обучающемуся проявить свои интеллектуальные и творческие способности, приобретения знаний, умений и навыков, необходимых для продолжения получения образования и дальнейшей трудовой деятельности в областях, определённых Стратегией научно-технологического развития.
1.4. Контроль достижения планируемых результатов обучения в 7
классе
1.4.1. Предметные результаты освоения программы учебного
предмета «Математика», 7 класс
Предметные результаты освоения программы учебного предмета
«Математика» за 7 класс по отдельным курсам представлены в таблице 3.
Таблица 3
Учебный курс «Алгебра»

22
Числа
Рациональные числа

Переходить от одной формы записи чисел к другой
(преобразовывать десятичную дробь в обыкновенную, обыкновенную в десятичную, в частности в бесконечную десятичную дробь);

Использовать понятия: множество натуральных чисел, множество целых чисел, множество рациональных чисел, при решении задач, проведении рассуждений и доказательств;

Понимать и объяснять смысл позиционной записи натурального числа;

Сравнивать и упорядочивать рациональные числа.

Выполнять, сочетая устные и письменные приёмы, арифметические действия с рациональными числами, использовать свойства чисел и правила действий, приемы рациональных вычислений.

Выполнять действия со степенями с натуральными показателями.

Находить значения числовых выражений, содержащих рациональные числа и степени с натуральным показателем; применять разнообразные способы и приёмы вычисления; составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов.

Округлять числа с заданной точностью, а также по смыслу практической ситуации; выполнять прикидку и оценку результата вычислений, оценку значений числовых выражений, в том числе, при решении практических задач.

Решать текстовые задачи арифметическим способом; использовать таблицы, схемы, чертежи, другие средства представления данных при решении задачи.

Решать практико-ориентированные задачи, связанные с отношением величин, пропорциональностью величин, процентами; интерпретировать результаты решения задач с учётом ограничений, связанных со свойствами рассматриваемых объектов.
Делимость

Доказывать и применять при решении задач признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, признаки делимости суммы и произведения целых чисел.

Раскладывать на множители натуральные числа.

23

Свободно оперировать понятиями: четное число, нечетное число, взаимно простые числа.

Находить наибольший общий делитель и наименьшее общее кратное чисел и использовать их при решении задач, применять алгоритм
Евклида.

Оперировать понятием остатка по модулю, применять свойства сравнений по модулю.
Алгебраические выражения
Выражения с переменными

Использовать алгебраическую терминологию и символику, применять её в процессе освоения учебного материала.

Находить значения алгебраических выражений при заданных значениях переменных.

Использовать понятие тождества, выполнять тождественнее преобразования выражений, доказывать тождества.
Многочлены

Выполнять преобразования целого выражения в многочлен приведением подобных слагаемых, раскрытием скобок.

Выполнять действия (сложение, вычитание, умножение) с одночленами и с многочленами, выполнять умножение одночлена на многочлен, применять формулы сокращённого умножения (квадрат и куб суммы, квадрат и куб разности, разность квадратов, сумма и разность кубов), в том числе для упрощения вычислений.

Осуществлять разложение многочленов на множители с помощью вынесения за скобки общего множителя, группировки слагаемых, применяя формулы сокращённого умножения.

Применять преобразования многочленов для решения различных задач из математики, смежных предметов, из реальной практики.

Использовать свойства степеней с натуральными показателями для преобразования выражений.
Уравнения и системы уравнений

Решать линейные уравнения с одной переменной, применяя правила перехода от исходного уравнения к равносильному ему. Проверять, является ли число корнем уравнения.

Применять графические методы при решении линейных

24 уравнений и их систем.

Подбирать примеры пар чисел, являющихся решением линейного уравнения с двумя переменными.

Строить в координатной плоскости график линейного уравнения с двумя переменными; пользуясь графиком, приводить примеры решения уравнения.

Решать системы двух линейных уравнений с двумя переменными, в том числе графически.

Составлять и решать линейное уравнение или систему линейных уравнений по условию задачи, интерпретировать в соответствии с контекстом задачи полученный результат.
Функции
Координаты и графики

Изображать на координатной прямой точки, соответствующие заданным координатам, лучи, отрезки, интервалы; записывать числовые промежутки на алгебраическом языке.

Отмечать в координатной плоскости точки по заданным координатам.
Функции

Строить график линейной функции.

Описывать с помощью функций известные зависимости между величинами: скорость, время, расстояние; цена, количество, стоимость; производительность, время, объём работы.

Находить значение функции по значению её аргумента.

Понимать графический способ представления и анализа информации; извлекать и интерпретировать информацию из графиков реальных процессов и зависимостей.

Использовать свойства функций для анализа графиков реальных зависимостей (нули функции, промежутки знакопостоянства функции, промежутки возрастания и убывания функции, наибольшее и наименьшее значения функции).

Использовать графики для исследования процессов и зависимостей; при решении задач из других учебных предметов и реальной жизни.
Учебный курс «Геометрия»

Распознавать изученные геометрические фигуры, определять их

25 взаимное расположение, изображать геометрические фигуры; выполнять чертежи по условию задачи. Измерять линейные и угловые величины.
Решать задачи на вычисление длин отрезков и величин углов.

Делать прикидку и оценку линейных и угловых величин предметов в реальной жизни, размеров природных объектов. Различать размеры этих объектов по порядку величины.

Строить чертежи к геометрическим задачам.

Пользоваться признаками равенства треугольников, использовать признаки и свойства равнобедренных треугольников при решении задач.

Проводить логические рассуждения с использованием геометрических теорем.

Пользоваться признаками равенства прямоугольных треугольников, свойством медианы, проведённой к гипотенузе прямоугольного треугольника, в решении геометрических задач.

Определять параллельность прямых с помощью углов, которые образует с ними секущая. Определять параллельность прямых с помощью равенства расстояний от точек одной прямой до точек другой прямой.

Решать задачи на клетчатой бумаге.

Проводить вычисления и находить числовые и буквенные значения углов в геометрических задачах с использованием суммы углов треугольников и многоугольников, свойств углов, образованных при пересечении двух параллельных прямых секущей. Решать практические задачи на нахождение углов.

Уверенно владеть понятием геометрического места точек (ГМТ).
Уметь определять биссектрису угла и серединный перпендикуляр к отрезку как геометрические места точек. Уметь пользоваться понятием ГМТ при доказательстве геометрических утверждений и при решении задач.

Формулировать определения окружности и круга, хорды и диаметра окружности, уверенно владеть их свойствами. Уметь доказывать и применять эти свойства при решении задач.

Уверенно владеть понятием описанной около треугольника окружности, уметь находить её центр. Уметь доказывать и использовать факты о том, что биссектрисы углов треугольника пересекаются в одной точке, и о том, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Уверено владеть понятием касательной к окружности, пользоваться теоремой о перпендикулярности касательной и радиуса, проведённого к точке касания. Уметь доказывать равенство отрезков

26 касательных к окружности, проведенных из одной точки, и применять это в решении геометрических задач.

Уметь доказывать и применять простейшие геометрические неравенствами, понимать их практический смысл.

Проводить основные геометрические построения с помощью циркуля и линейки.
Учебный курс «Вероятность и статистика»

Читать информацию, представленную в таблицах, на диаграммах; представлять данные в виде таблиц, строить столбиковые (столбчатые) и круговые диаграммы по массивам значений.

Описывать и интерпретировать реальные числовые данные, представленные в таблицах, на диаграммах, графиках.

Использовать для описания данных статистические характеристики: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах, квартили.

Иметь представление о логических утверждениях и высказываниях, уметь строить отрицания, формулировать условные утверждения при решении задач, в том числе из других учебных курсов, иметь представление о теоремах-свойствах и теоремах-признаках, о необходимых и достаточных условиях, о методе доказательства от противного.

Иметь представление о случайной изменчивости на примерах результатов измерений, цен, физических величин, антропометрических данных; иметь представление о статистической устойчивости.

Использовать для описания данных частоты значений, группировать данные, строить гистограммы группированных данных.

Использовать графы для решения задач, иметь представление о терминах теории графов: вершина, ребро, цепь, цикл, путь в графе, иметь представление об обходе графа и об ориентированных графах.
1.4.2. Пример итоговой контрольной работы по курсу алгебры
1.4.2.1. СПЕЦИФИКАЦИЯ контрольно-измерительных
материалов для оценки достижения планируемых

27
результатов обучения по алгебре в 7 классе на
углубленном уровне
Назначение работы: определение соответствия образовательных результатов освоения учащимися учебного курса «Алгебра» 7 класса на углубленном уровне.
Документы,
определяющие
нормативно-методическую
базу
контрольной работы:
1.
Федеральный государственный образовательный стандарт основного общего образования (Приказ Министерства просвещения
Российской Федерации от 31.05.2021 года № 287 «Об утверждении федерального государственного образовательного стандарта основного общего образования»);
2.
Примерная рабочая программа основного общего образования. Математика. Углублённый уровень (одобрена ФУМО
29.04.2022 года, протокол №2/22).
Структура работы
Всего в работе 10 заданий, среди них 7 заданий обязательного уровня и
3 задания повышенного уровня освоения курса.
Задания обозначены в работе специальными значками:
○ – задание обязательного уровня;
● – задание повышенного уровня.
Распределение заданий по разделам содержания приведено в таблице 1.
Табл. 1. Распределение заданий по разделам содержания
Название раздела содержания
Число заданий
Числа и вычисления
4
Алгебраические выражения
2
Уравнения и неравенства
2
Функции и графики
2
План контрольной работы приведен в таблице 2.

28
Табл. 2. План варианта работы
Номер задания
Проверяемые умения
Уровень освоения
Примерное время выполнения, мин
1
Использовать свойства степеней с натуральными показателями для преобразования выражений
Обязатель ный
3 2
Применять при решении задач признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11.
Обязатель ный
3 3
Решать линейные уравнения с одной переменной, применяя правила перехода от сходного уравнения к равносильному ему
Обязатель ный
4 4
Осуществлять разложение многочленов на множители с помощью вынесения за скобки общего множителя, группировки слагаемых, применяя формулы сокращённого умножения
Обязатель ный
3 5
Понимать графический способ представления и анализа информации; извлекать и интерпретировать информацию из графиков реальных процессов и зависимостей
Обязатель ный
4 6
Решать системы двух линейных уравнений с двумя переменными
Обязатель ный
5 7
Находить наибольший общий делитель и наименьшее общее кратное чисел и использовать их при решении задач
Обязатель ный
4 8
Решать практико-ориентированные задачи, связанные с отношением величин, пропорциональностью величин, процентами; интерпретировать результаты решения задач с учётом ограничений, связанных со свойствами рассматриваемых объектов
Повышенн ый
4 9
Находить значение функции по значению её аргумента. Использовать свойства функций для анализа графиков. Строить графики линейных функций
Повышенн ый
5 10
Подбирать примеры пар чисел, являющихся решением линейного уравнения с двумя переменными
Повышенн ый
5
Время выполнения работы
На выполнение контрольной работы отводится 40 мин.
Оценивание результатов выполнения работы
Критерии оценивания должны быть открыты для учащихся с тем, чтобы они понимали, как и за что выставляется та или иная отметка.

29
Контрольная работа и, соответственно, критерии оценки составлены таким образом, чтобы у учащихся было «право на ошибку» при выполнении работы как на отметку «3», так и на отметку «5».
Предлагаемые критерии оценивания носят рекомендательный характер, и могут корректироваться учителем в зависимости от особенностей класса.
При этом, однако, целесообразно сохранять два описанных выше требования: надо, чтобы учащимся было объяснено, за что будет выставляться та или иная отметка; надо, чтобы у учащихся сохранялось «право на ошибку».
Задания 1-3 и 6-10 считаются выполненными верно, если ученик дал верный ответ на вопрос задания и привел соответствующее ответу решение.
Задание 4 считается выполненным верно, если ученик выписал номера
всех верных равенств, в противном случае задание не считается выполненным.
Задание 5 считается выполненным верно, если на все вопросы даны верные ответы.
В таблице 3 приводится рекомендуемое наименьшее число заданий, которые необходимо выполнить, чтобы получить отметки «3», «4» и «5».
Табл.3. Рекомендации по оцениванию выполнения контрольной
работы
Отметка
отметка «3» отметка «4» отметка «5»
Выполнено
верно
заданий






6

7 6

1 7
2
В таблице 4 даются ответы к заданиям контрольной работы.
Табл.4. Ответы к заданиям контрольной работы
Номер
задания
Вариант 1
Вариант 2
1
–224
–195 2
4587 7216 3
5
–5

30 4
1, 4 1, 3 5
1) 0

С; 3

С; –2

С;
2) в 2 ч; с 23 ч до 24 ч;
3) с 0 ч до 12 ч;
4) с 0 ч до 7 ч; с 18 ч до 24 ч;
5) не является.
1) 0

С; 2,5

С; 2

С;
2) с 2 ч до 4 ч; в 23 ч;
3) с 0 ч до 14 ч;
4) с 0 ч до 8 ч; с 19 ч до 24 ч;
5) не является.
6
(0, –2)
(0, –4)
7
Приведено доказательство
Приведено доказательство
8 2 %
3 %
9
y = 3x – 2
y = 4x – 5 10 1) 10 купюрдостоинством 2000 р. и 2 купюрыдостоинством 5000 р.;
2) 5 купюрдостоинством 2000 р. и 4 купюрыдостоинством 5000 р.
1) 15 купюрдостоинством 2000 р. и 2 купюрыдостоинством 5000 р.;
2) 10 купюрдостоинством 2000 р. и 4 купюрыдостоинством 5000 р.;
3) 5 купюрдостоинством 2000 р. и 6 купюрдостоинством 5000 р.
1.4.2.2. Итоговая контрольная работа по курсу «Алгебра.
Углубленный уровень». 7 класс
Вариант 1
○1. Найдите значение выражения
12 3
0 7
5
( 5)
27
( 12,7)
( 3) 25


 


○ 2. Максим придумал для велосипедного замка код и записал пять чисел:
363, 3645, 4587, 1012, 4443.
Одно из них является кодом для замка. Известно, что это число четырёхзначное, кратно числу 11 и нечётное. Какой код придумал Максим?
○ 3. Решите уравнение: (7 + x)(x – 7) – x(x – 9,4) = –2.
○ 4. Запишите номера всех верных равенств.
1) (4 + a)
2
– 9b
2
=(4 + a – 3b)(4 + a + 3b)
2) 8x
5
– 32x
13
= 8x
5
(1 – 2x
4
)
2 3) –20y
2
+ 20yx
2
– 5x
4
= 5(2y x
2
)
2 4) 9c
2
+ 6c + 1 – d
2
= (3c + 1 – d)(3c – 1 – d)

31
○ 5. На рисунке изображён график изменения температуры воздуха на протяжении суток.
Т
ем пе ра ту ра

C
Время, ч
0 1
2 3
-
1
-
2
-
3 2
4 6
8 10 12 14 16 18 20 22 24
Пользуясь графиком, определите:
1) какой была температура воздуха в 16 ч;
2) в какое время температура воздуха составляла –2,5

С;
3) в течение какого промежутка времени температура воздуха повышалась;
4) в течение скольких часов температура воздуха была ниже 0

С.
○ 6. Решите систему уравнений
2,3 8,5 17,
4,6 2,3 9, 2.
x
y
y
x

 





○ 7. Докажите, что дробь
2 3
4 7
n
n


является несократимой.
● 8. В школьной олимпиаде по математике участвовали 40% учащихся седьмых классов, из них 5% учащихся приняли участие в школьной олимпиаде по физике. (В олимпиаде по физике участвовали только

32 участники олимпиады по математике.) Сколько процентов учащихся седьмого класса участвовали в школьных олимпиадах и по математике и по физике?
● 9. График линейной функции пересекает ось ординат в точке A (0; –2) и пересекает график функции y = 4x – 3 в точке с равными абсциссой и ординатой. Задайте формулой линейную функцию и постройте её график.
● 10. Ольге Сергеевне нужно оплатить покупку велосипеда стоимостью
30000 р. У нее есть только купюры достоинством 2000 р. и 5000 р. Сколько купюр каждого достоинства нужно для оплаты покупки, используя купюры обоих достоинств, без сдачи? Найди все возможные варианты.
Вариант 2
○1. Найдите значение выражения
13 4
0 6
6
( 4)
49
( 15, 2)
( 7) 16


 


○ 2. Татьяна придумала для велосипедного замка код и записала пять чисел: 5644, 2057, 7216, 1634, 22022. Одно из них является кодом для замка.
Известно, что это число четырёхзначное, чётное и кратно числу 11. Какой код придумала Татьяна?
○ 3. Решите уравнение (6 + x)(x – 6) – x(x + 1,2) = –30.
○ 4. Запишите номера всех верных равенств.
1) (3 + a)
2
– 16b
2
=(3 + a + 4b)(3 + a – 4b)
2) 9y
6
– 36y
14
= 9x
6
(1 – 2y
4
)
2 3) –7x
4
+ 42yx
2
– 63y
2
= –7(x
2
– 3y)
2 4) 4n
2
+ 4n + 1 – m
2
= (4n + 1 – m)(4n – 1 – m)

33
○ 5. На рисунке изображён график изменения температуры воздуха на протяжении суток.
Т
ем пе ра ту ра

C
Время, ч
0 1
2 3
-
1
-
2
-
3 2
4 6
8 10 12 14 16 18 20 22 24
Пользуясь графиком, определите:
1) какой была температура воздуха 12 ч;
2) в какое время температура воздуха равнялась –1,5

С;
3) промежуток времени, в течение которого температура воздуха повышалась;
4) в течение скольких часов температура воздуха была ниже 0

С.
○ 6. Решите систему уравнений:
3, 4 6, 4 25,6,
2,5 3, 4 10.
x
y
y
x

 





○7. Докажите, что дробь
3 4
6 9
n
n


является несократимой.
● 8. В школьной олимпиаде по биологии участвовали 50% учащихся седьмых классов, из них 6% учащихся приняли участие в школьной олимпиаде по литературе. (В олимпиаде по литературе участвовали только участники олимпиады по биологии.) Сколько процентов учащихся седьмого класса участвовали в школьных олимпиадах и по биологии и по литературе?

34
● 9. График линейной функции пересекает ось ординат в точке A (0; –5) и пересекает график функции y = 5x – 8 в точке с равными абсциссой и ординатой. Задайте формулой эту линейную функцию и постройте её график.
● 10. Виктору Михайловичу нужно оплатить покупку электросамоката стоимостью 40000 р. У него есть только купюры достоинством 2000 рублей и 5000 рублей. Сколько купюр каждого достоинства нужно для оплаты покупки, используя купюры обоих достоинств, без сдачи? Найди все возможные варианты.
1.4.3. Пример итоговой контрольной работы по геометрии
1.4.3.1. Спецификация контрольно-измерительных материалов для
оценки достижения планируемых результатов обучения по геометрии в
7 классе на углубленном уровне
Назначение работы: определение соответствия образовательных результатов освоения учащимися учебного курса «Геометрия» 7 класса на углубленном уровне.
Документы,
определяющие
нормативно-методическую
базу
контрольной работы:
1.
Федеральный государственный образовательный стандарт основного общего образования (Приказ Министерства просвещения
Российской Федерации от 31.05.2021 года № 287 "Об утверждении федерального государственного образовательного стандарта основного общего образования");

35 2.
Примерная рабочая программа основного общего образования.
Математика. Углублённый уровень (одобрена ФУМО 29.04.2022 года протокол №2/22).
Структура работы
Всего в работе 10 заданий, среди них 7 заданий обязательного уровня и
3 задания повышенного уровня освоения курса.
Задания обозначены в работе специальными значками:
○ – задание обязательного уровня;
● – задание повышенного уровня.
Распределение заданий по разделам содержания приведено в таблице 1.
Табл. 1. Распределение заданий по разделам содержания
Название раздела содержания
Число заданий
Начала геометрии
2
Треугольники
2
Параллельные прямые. Сумма углов многоугольника
3
Прямоугольные треугольники
1
Окружность
1
Геометрические места точек
1
План контрольной работы приведен в таблице 2.
Табл. 2. План варианта работы
Номер задания
Проверяемые умения
Уровень освоения
Примерное время выполнения, мин
1
Решать задачи на вычисление длин отрезков
Обязательный 2 2
Решать задачи на вычисление величин углов
Обязательный 3 3
Пользоваться признаками равенства треугольников
Обязательный 3 4
Определятьпараллельность прямых, используя свойства параллельных и секущей
Обязательный 2 5
Использовать и свойства равнобедренного треугольника при решении задач на клетчатой бумаге
Обязательный 2 6
Пользоваться понятием ГМТ при решении
Обязательный 3

36 задач
7
Использовать понятиевписанной в треугольник окружности
Обязательный 4 8
Использовать теорему о сумме углов треугольника и признаки равнобедренного треугольника
Повышенный 7 9
Использовать признаки параллельности прямых
Повышенный 7 10
Использовать признаки равнобедренного треугольника, находить числовые и буквенные значения углов в геометрических задачах
Повышенный 7
Время выполнения работы
На выполнение контрольной работы отводится 40 мин.
Оценивание результатов выполнения работы
Критерии оценивания должны быть открыты для учащихся с тем, чтобы они понимали, как и за что выставляется та или иная отметка.
Контрольная работа и, соответственно, критерии оценки составлены таким образом, чтобы у учащихся было «право на ошибку» при выполнении работы как на отметку «3», так и на отметку «5».
Предлагаемые критерии оценивания носят рекомендательный характер, и могут корректироваться учителем в зависимости от особенностей класса.
При этом, однако, целесообразно сохранять два описанных выше требования: надо, чтобы учащимся было объяснено, за что будет выставляться та или иная отметка; надо, чтобы у учащихся сохранялось «право на ошибку».
При выполнении заданий обязательного уровня полное обоснование решений не требуется. При увеличении времени выполнения работы до
60 мин и более можно включить требование полных обоснований решений.
Задание 4 считается выполненным верно, если ученик выписал номера
всех верных равенств, в противном случае задание не считается выполненным.
В таблице 3 приводится рекомендуемое наименьшее число заданий, которые необходимо выполнить, чтобы получить отметки «3», «4» и «5».

37
Табл.3. Рекомендации по оцениванию выполнения контрольной
работы
Отметка
отметка «3» отметка «4» отметка «5»
Выполнено верно
заданий






6

7 6

1 7
2
В таблице 4 даются ответы к заданиям контрольной работы.
Табл.4. Ответы к заданиям контрольной работы
Номер
задания
Вариант 1
Вариант 2
1 2
2 2
151

96

3 4,3 см
3,8 см
4 2, 4 1, 4 5
16,5 см
22,5 см
6 2
4 7
48 см
36 см
8 12 см
18 см
9
Приведено доказательство
Приведено доказательство
10 90

+

90

+ 2

1.4.3.2. Итоговая контрольная работа по курсу «Геометрия.
Углубленный уровень». 7 класс
Вариант 1
○ 1. Длина отрезка AD равна 46 мм. Сколько существует на прямой
AD точек, для которых сумма расстояний до концов отрезка AD равна
5 cм?
○ 2. Известно, что прямые m и n пересекаются и

1 +

3 = 58

Найдите угол 2.

38 1
2 3
m
n
○ 3. Используя данные, приведенные на рисунке, найдите сторону BD.
D
B
A
C
4,3 см
○ 4. Используя данные, приведенные на рисунке, определите, верны ли утверждения. Укажите в ответе номера всех верных утверждений.
1) Прямые a и b не параллельны.
2) Прямые b и d параллельны.
3) Прямые n и b параллельны.
4) Прямая m — секущая для прямых a и n.
○ 5. На рисунке изображён равнобедренный треугольник MNP.
Найдите длину биссектрисы треугольника, проведённую к его основанию.
M
N
P
3 см

39
○ 6. Прямая a пересекает стороны угла MON. Укажите номер рисунка, на котором построены все точки, принадлежащие углу, равноудалённые от его сторон и находящиеся на расстоянии 0,5 см от прямой a.
1)
a
A
M
O
N
0,5 см
2)
a
B
A
M
O
N
0,5 см
3)
a
B
A
M
O
N
0,5 см
4)
a
B
A
M
O
N
0,5 см
○ 7. Дано:
ABC,

C = 90

,

A = 60

, окружность с центром в точке O вписана в ∆ABC,
r = 24 см.
Найти: AO
● 8. В треугольнике LMN биссектрисы LA и MP пересекаются в точке
O. Найдите сторону LN, если .

MLN = 64

,

LOP = 58

, а LP = 6 см.
● 9. В треугольнике ABC проведена биссектриса BL и на ней отмечена середина — точка O. На стороне BC отмечена точка M такая, что MO

BL.
Докажите, что ML || AB.

40
● 10. В равнобедренном треугольнике DEF угол D при основании равен
2

. Медиана EN, проведённая к основанию треугольника,и биссектриса FK
треугольника пересекаются в точке O. Найдите угол EOF.
Вариант 2
○1. Длина отрезка CF равна 52 мм. Сколько существует на прямой
CF точек, для которых сумма расстояний до концов отрезка AD равна
6 cм?
○2. Известно, что прямые l и k пересекаются и

1 +

3 = 168

Найдите угол 2.
1 2 3
l
k
○3. Используя данные, приведенные на рисунке, найдите сторону EF.
D
F
E
C
3,8 см
○4. Используя данные, приведенные на рисунке, определите, верны ли утверждения. Укажите в ответе номера всех верных утверждений.
1) Прямые m и c параллельны.
2) Прямые n и b не параллельны.
3) Прямые n и c параллельны.
4) Прямая a — секущая для прямых c и m.

41
○5. На рисунке изображён равнобедренный треугольник ABC. Найдите длину биссектрисы треугольника, проведённую к его основанию.
B
C
A
5 см
○ 6. Прямая c пересекает стороны угла KOP. Укажите номер рисунка, на котором построены все точки, принадлежащие углу, равноудалённые от его сторон и находящиеся на расстоянии 1,5 см от прямой c.
1)
c
B
A
K
O
P
0,5 см
2)
C
B
A
K
O
P
0,5 см
3)
c
A
K
O
P
0,5 см
4)
c
B
A
K
O
P
0,5 см
○ 7. Дано:
ABC,

C = 90

,

B = 60

, окружность с центром в точке O вписана в ∆ABC,

42
r = 18 см.
Найти: BO
● 8. В треугольнике ADC биссектрисы CN и DM пересекаются в точке
O. Найдите сторону AC, если .

CDA = 44

,

COM = 56

, а CM = 9 см.
● 9. В треугольнике EFD проведена биссектриса EA и на ней отмечена середина — точка O. На стороне EF отмечена точка C такая, что CO

EA.
Докажите, что DE || AC.
● 10. В равнобедренном треугольнике PLK угол K при основании равен
4

. Медиана LB, проведённая к основанию треугольника,и биссектриса PA
треугольника пересекаются в точке O. Найдите угол POL.
1.4.4. Пример итоговой контрольной работы по вероятности
и статистике
1.4.4.1. Спецификация контрольно – измерительных материалов
для оценки достижения планируемых результатов обучения
по вероятности и статистике в 7 классе на углубленном уровне
Назначение работы: определение соответствия образовательных результатов освоения учащимися учебного курса «Вероятность и статистика»
7 класса на углубленном уровне.
Документы,
определяющие
нормативно-методическую
базу
контрольной работы:
1.
Федеральный государственный образовательный стандарт основного общего образования (Приказ Министерства просвещения
Российской Федерации от 31.05.2021 года № 287 "Об утверждении

43 федерального государственного образовательного стандарта основного общего образования");
2.
Примерная рабочая программа основного общего образования.
Математика. Углублённый уровень (одобрена ФУМО 29.04.2022 года протокол №2/22).
Структура работы
Всего в работе 6 заданий, среди них 4 заданий обязательного уровня и 2 задания повышенного уровня освоения курса.
Задания обозначены в работе специальными значками:
○ – задание обязательного уровня;
● – задание повышенного уровня.
Распределение заданий по разделам содержания приведено в таблице 1.
Табл. 1. Распределение заданий по разделам содержания
Название раздела содержания
Число заданий
Представление данных
2
Описательная статистика
2
Случайная изменчивость
1
Логика
1
Всего
6
План контрольной работы приведен в таблице 2.
Табл. 2. План варианта работы
Задание
Проверяемые умения
Уровень
освоения
Примерное
время
выполнения,
мин
Общий текст
Смысловое чтение текста
Обязательный
5 1
Представлять данные в виде таблиц
Обязательный
3 2
Описывать и интерпретировать реальные числовые данные, представленные в таблицах
Обязательный
3 3
Использовать для описания данных
Обязательный
4

44 статистические характеристики: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах
4
Иметь представление о логических утверждениях и высказываниях, уметь формулировать условные утверждения при решении задач
Обязательный
5 5
Использовать для описания данных статистические характеристики: среднее арифметическое
Повышенный
5 6
Иметь представление о случайной изменчивости на примерах результатов измерений; использовать для описания данных статистические характеристики: среднее арифметическое, наибольшее и наименьшее значения, размах
Повышенный
5
Время выполнения работы
На выполнение контрольной работы отводится 30-40 мин.
Оценивание результатов выполнения работы
Критерии оценивания должны быть открыты для учащихся с тем, чтобы они понимали, как и за что выставляется та или иная отметка.
Контрольная работа и, соответственно, критерии оценки составлены таким образом, чтобы у учащихся было «право на ошибку» при выполнении работы как на отметку «3», так и на отметку «5».
Предлагаемые критерии оценивания носят рекомендательный характер, и могут корректироваться учителем в зависимости от особенностей класса.
При этом, однако, целесообразно сохранять два описанных выше требования: надо, чтобы учащимся было объяснено, за что будет выставляться та или иная отметка; надо, чтобы у учащихся сохранялось «право на ошибку».
Задание 1 считается выполненным полностью (начисляется 2 балла), если верно заполнены все ячейки таблицы, считается выполненным частично
(1 балл), если одна ячейка заполнена неверно, остальные – верно.
Задание 2 считается выполненным полностью (начисляется 1 балл), если дан верный ответ и приведено верное решение.

45
Задание 3 считается выполненным полностью (начисляется 2 балла), если ученик выписал номера всех верных равенств, считается выполненным частично (1 балл), если одно утверждение выбрано неверно, остальные – верно.
Задание 4 считается выполненным полностью (начисляется 1 балл), если дан верный ответ и приведен верный контрпример.
Задания 5 и 6 считаются выполненными полностью (начисляется по 2 балла), если дан верный ответ и приведено верное решение, считаются выполненными частично (1 балл), если при верном ходе решения допущена одна вычислительная ошибка или описка.
Максимальное число баллов за контрольную работу – 10.
В таблице 3 приводится рекомендуемое наименьшее число заданий, которые необходимо выполнить, чтобы получить отметки «3», «4» и «5».
Табл.3. Рекомендации по оцениванию выполнения контрольной
работы
Отметка
отметка «3» отметка «4» отметка «5»
Получено баллов






4

6 5
4

1 2
5 3
В таблице 4 даются ответы и решения к заданиям контрольной работы.
Табл.4. Ответы и решения к заданиям контрольной работы
Номер
задания
Ответы и решения
1
Команда Матчи
Победы
Ничьи
Поражения
Забито
(З)
Пропущено
(П)
Разница
(З - П)
А
5 3
1 1
16 11 5
В
5 1
1 3
11 16
-5 2
Ответ: Команда А.
Решение: Очки команды А: 3+3+0+3+3+1=10, очки команды В: 0+0+3+0+1=4, команда А набрала больше очков.
3
Ответы: 1) верно (6+7+5+5+4=27; 27:5=5,4 > 5); 2) неверно (4,5,5,6,7, медиана равна 5); 3) верно; 4) неверно; 5) неверно; 6) верно.

46 4
Ответ: Неверно.
Контрпример: Результаты пяти матчей: 1:0, 1:0, 1:0, 1:0, 0:10; команда А набрала 12 очков и победила, разница забитых и пропущенных: 4-10=-6, проигравшая команда набрала 3 очка, ее разница равна 10-4=6.
5
Ответ: 186,2 см.
Решение: Общий рост игроков команды А – 189 х 20 = 3780 (см), команды В –
25 х 184 = 4600 (см), игроков двух команд – 3780 + 4600 = 8380 (см); средний рост всех игроков – 8380 : 45 = 186,2 (см).
6
Ответ: В среднем команда А забивает в матче на 1 шайбу больше, чем пропускает, отклонения от среднего не превышают 3 шайб, размах разницы равен 5 шайбам.
Решение: Разница заброшенных и пропущенных шайб: 4, 1, -1, 1, 0; размах разницы равен 5; среднее арифметическое разницы: 5 : 5 = 1. Отклонение от среднего арифметического: 3, 0, -2, 0, -1.
1.4.4.2. Итоговая контрольная работа по курсу «Вероятность
и статистика. Углубленный уровень». 7 класс
Прочитайте текст «Финальные матчи хоккейного турнира»и
выполните задания 1-6.
Финальные матчи хоккейного турнира
По правилам хоккейного турнира в финальной части две лучшие команды должны сыграть друг с другом 5 матчей. Победа в турнире присуждается той команде, которая по итогам пяти матчей наберет большее количество очков.
В таблице показано, как начисляются очки командам по итогам матча:
Результат игры
Очки
Победа
3
Ничья
1
Поражение
0
В финале играли команды А и В. Матчи закончились со счетом:
5:1; 2:3; 4:3; 3:2; 2:2.
Первое число показывает количество шайб, забитых командой А, второе число – количество шайб, забитых командой В:

47
1. Заполните таблицу по результатам пяти матчей финального турнира.
Команда Матчи
Победы
Ничьи
Поражения
Забито
(З)
Пропущено
(П)
Разница
(З - П)
А
5
В
5
2. Какая команда победила в турнире?
Дайте ответ и приведите решение.
3. Спортивный журналист проанализировал результаты всех матчей команды А и команды В, сыгранных в финальном турнире, а затем высказал несколько суждений. Какие из этих суждений являются верными?
Запишите номера всех верных суждений.
1)
В среднем за один матч обе команды вместе забрасывали не менее 5 шайб.
2)
Медиана числа шайб, заброшенных в матче, равна 7.
3)
Команда А забросила больше шайб, чем пропустила.
4)
Разница числа заброшенных и числа пропущенных шайб в каждом матче не превышала трех.
5)
Самым результативным по общему числу заброшенных шайб стал первый матч финального турнира.
6)
В каждом матче турнира команды забрасывали хотя бы по одной шайбе.
4. Верно ли, что разница общего числа заброшенных и общего числа пропущенных шайб у победившей в турнире команды всегда положительна, а у проигравшей команды – всегда отрицательна?
Если это утверждение верно, то объясните, почему. Если утверждение неверно, то приведите контрпример.

48
Дайте ответ и приведите решение.
5. В финальных матчах турнира в команде А приняли участие 20 хоккеистов, и их средний рост равен 189 см, в команде В – 25 хоккеистов, их средний рост равен 184 см. Найдите средний рост всех хоккеистов финального турнира.
Дайте ответ и приведите решение.
6. Охарактеризуйте изменчивость для команды А такого показателя результата матча как разница числа заброшенных и пропущенных шайб, используя размах, отклонение от среднего арифметического и максимальное отклонение от среднего.
Дайте ответ и приведите решение.

49
1   2   3   4   5   6   7   8   9


написать администратору сайта