Фатыхов М.А. Лекции по механикe. Министерство образования и науки
Скачать 3.22 Mb.
|
λ =vT (11.61) где v – скорость волны, T – период колебаний. Длину волны можно определить также, как расстояние между ближайшими точками среды, колеблющимися с разностью фазы, равной 2 (см. рис. 11.12). Заменив в соотношении (11.61) T на 1/f (f – частота колебаний), получим λf= v (11.62) К этой же формуле можно прийти другим способом: за одну секунду источник волн совершает v колебаний, порождая в среде при каждом колебании один «гребень» и одну «впадину» волны. К тому моменту, когда источник будет завершать v-e колебание, первый «гребень» успеет пройти путь v. Следовательно, f «гребней» и «впадин» волны должны уложиться на длине v. 11. Уравнение плоской и сферической бегущей волны. Фазовая скорость. Волновое уравнение Бегущими волнами называются волны, которыепереносят в пространстве энергию. Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат и времени t: (11.63) (имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической как относительно времени t, так и относительно координат х, y, z. Периодичность по времени вытекает из того, что описывает колебания частицы с координатами х, у, z. Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстояние л, колеблются одинаковым образом. Найдем вид функции в плоской волне, предполагая, что колебания носят гармонический характер. Для упрощения направим оси координат так, чтобы ось х совпала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными оси х и, поскольку все точки волновой поверхности колеблются одинаково, смещение будет зависеть только от х и t: = (х, t). Пусть колебания точек, лежащих в плоскости х = 0 (рис. 11.13), имеют вид .
Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того чтобы пройти путь от плоскости х = 0 этой плоскости, волне требуется время = x/х(х – скорость распространения волны). Следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на от колебаний частиц в плоскости х = 0, т.е. будут иметь вид . Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси х, выглядит следующим образом: ] (11.64) Величина А представляет собой амплитуду волны. Из (11.64) следует, что является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (11.64) есть уравнение бегущей волны. Если плоская волна распространяется в противоположном направлении, то . В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид , (11.65) где A= const – амплитуда волны, – циклическая частота волны, – начальная фаза колебаний, определяемая в общем случае выбором начал отсчета х и t, – фаза плоской волны. Для характеристики волн используется волновое число (11.66) Учитывая его, уравнению (11.65) можно придать вид (11.67) Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (11.67) только знаком члена kx. Предположим, что при волновом процессе фаза постоянна, т.е. (11.68) Продифференцировав последнее выражение и сократив на , получим , откуда . (11.69) Следовательно, скорость vраспространения волны в уравнении (11.65) есть не что иное, как скорость перемещения фазы волны, и ее называют фазовой скоростью. При выводе формулы (11.67) мы предполагали, что амплитуда колебаний не зависит от х. Для плоской волны это наблюдается в том случае, когда энергия волны не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны с удалением от источника колебаний постепенно уменьшается – наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону: , где – амплитуда в точках плоскости х = 0. Соответственно, уравнение плоской волны имеет следующий вид: (11.70) Теперь найдем уравнение сферической волны. Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, значительно превышающих его размеры, то источник можно считать точечным. В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника равна t . Тогда точки, лежащие на волновой поверхности радиуса r, будут колебаться с фазой (t – r/х) = t – kr(чтобы пройти путь r, волне требуется время ф = r/х). Амплитуда колебаний в этом случае, даже если энергия волны не поглощается средой, не остается постоянной – она убывает с расстоянием от источника по закону 1/r. Следовательно, уравнение сферической волны имеет вид , (11.71) где А – постоянная величина, численно равная амплитуде на расстоянии от источника, равном единице. Размерность А равна размерности колеблющейся величины, умноженной на размерность длины. Для поглощающей среды в формулу (11.71) нужно добавить множитель e–гr. Напомним, что в силу сделанных предположений уравнение (11.71) справедливо только при r, значительно превышающих размеры источника. При стремлении r к нулю выражение для амплитуды обращается в бесконечность. Этот абсурдный результат объясняется неприменимостью уравнения для малых r. Из выражения (11.66) вытекает, что фазовая скорость (11.72) Если фазовая скорость волн в среде зависит от их частоты, то это явление называют дисперсией волн, а среда, в которой наблюдается дисперсия волн, называется диспергирующей средой. Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением – дифференциальным уравнением в частных производных , (11.73) где v– фазовая скорость, – оператор Лапласа. Решением уравнения (11.73) является уравнение любой волны, в частности, плоской (см. (11.65)) и сферической (см. (11.71)) волн. Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид. 12. Принцип суперпозиции. Групповая скорость Если среда, в которой распространяется одновременно несколько волн, линейна, т.е. ее свойства не изменяются под действием возмущений, создаваемых волной, то к ним применим принцип суперпозиции (наложения) волн: при распространении в линейной среде нескольких волн каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов. Исходя из принципа суперпозиции и разложения Фурье, любая волна может быть представлена в виде суммы гармонических волн, т.е. в виде волнового пакета или группы волн. Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства. «Сконструируем» простейший волновой пакет из двух распространяющихся вдоль положительного направления оси х гармонических волн с одинаковыми амплитудами, близкими частотами и волновыми числами, причем . Тогда В этой формуле есть амплитуда. Поэтому образовавшаяся волна отличается от гармонической тем, что ее амплитуда есть медленно изменяющаяся функция координаты х и времени t. За скорость распространения этой негармонической волны (волнового пакета) принимают скорость перемещения максимума амплитуды волны, рассматривая тем самым максимум в качестве центра волнового пакета. При условии, что , получим (11.74) Скорость и есть групповая скорость. Ее можно определить как скорость движения группы волн, образующих в каждый момент времени локализованный в пространстве волновой пакет. Хотя выражение (11.74) получено для волнового пакета из двух составляющих, можно доказать, что оно справедливо в самом общем случае. Рассмотрим связь между групповой и фазовой скоростями. Получим (11.75) Из формулы (11.75) вытекает, что и может быть как меньше, так и больше v в зависимости от знака . В недиспергирующей среде и групповая скорость совпадает с фазовой. Понятие групповой скорости очень важно, так как именно она фигурирует при измерении дальности в радиолокации, в системах управления космическими объектами и т.д. В теории относительности доказывается, что групповая скорость , в то время как для фазовой скорости ограничений не существует. 13. Энергия упругой волны Пусть в некоторой среде распространяется в направлении оси х плоская продольная волна = a cos ( t − kx). Выделим в среде элементарный объем ДV, настолько малый, что скорость движения и деформацию во всех точках этого объема можно было считать одинаковыми и равными, соответственно, и . Обозначим плотность среды через , а скорость движения – через . Тогда масса выделенного объема равна . Выделенный нами объем обладает кинетической энергией (11.76) Относительное удлинение цилиндра есть . Модуль Юнга среды – Е. Тогда рассматриваемый объем обладает также потенциальной энергией упругой деформации (11.77) Так как скорость распространения продольных волн , заменим в (11.77) модуль Юнга через сх2. Тогда выражение для потенциальной энергии объема ДV примет вид (11.78) Выражения (11.76) и (11.78) в сумме дают полную энергию (11.79) Разделив эту энергию на объем ДV, в котором она содержится, получим плотность энергии (11.80) Дифференцируем выражение для один раз по t, другой раз по x . Получим , . Подставив эти выражения в формулу (11.80) и приняв во внимание, что k2х2 = щ2, получим (11.81) В поперечной волне плотность энергии получает такое же выражение. Из (11.81) следует, что плотность энергии в каждый момент времени в разных точках пространства различна. В одной и той же точке плотность энергии изменяется со временем по закону квадрата синуса. Среднее значение квадрата синуса равно 1/2. Соответственно, среднее по времени значение плотности энергии в каждой точке среды равно (11.82) Плотность энергии и ее среднее значение пропорциональны плотности среды с, квадрату частоты щ и квадрату амплитуды волны А. Подобная зависимость имеет место не только для незатухающей плоскости волны, но и для других видов волн (плоской затухающей, сферической и т.д.). Итак, среда, в которой распространяется волна, обладает дополнительным запасом энергии. Эта энергия доставляется от источника колебаний в различные точки среды самой волной; следовательно, волна переносит с собой энергию. Количество энергии, переносимое волной через некоторую поверхность в единицу времени, называется потоком энергии через эту поверхность. Если через данную поверхность переносится за время dtэнергия dЕ, то поток энергии Ф равен (11.83) Поток энергии – скалярная величина, размерность которой равна размерности энергии, деленной на размерность времени, т.е. совпадает с размерностью мощности. В соответствии с этим Ф измеряется в ваттах, эрг/с и т. п. Поток энергии в разных точках среды может быть различной интенсивности. Для характеристики течения энергии в разных точках пространства вводится векторная величина, называемая плотностью потока энергии. Эта величина численно равна потоку энергии через единичную площадку, помещенную в данной точке перпендикулярно направлению, в котором переносится энергия. Направление вектора плотности потока энергии совпадает с направлением переноса энергии. Пусть через площадку , перпендикулярную направлению распространения волны, переносится за время ∆t энергия ∆Е. Тогда плотность потока энергии равна (11.84) Через площадку (рис. 6.1) за время ∆t будет перенесена энергия ∆Е, заключенная в объеме цилиндра с основанием и высотой v∆t (v – фазовая скорость волны). Если размеры цилиндра достаточно малы (за счет малости и ∆t) для того, чтобы плотность энергии во всех точках цилиндра можно было считать одинаковой, то ∆Е можно найти как произведение плотности энергии w на объем цилиндра, равный : . Подставив это выражение в формулу (11.84), получим выражение для плотности потока энергии: (11.85) Наконец, введя вектор v, модуль которого равен фазовой скорости волны, а направление совпадает с направлением распространения волны (и переноса энергии), можно написать, что j = wv (11.86)
Мы получили выражение для вектора плотности потока энергии (интенсивности волны). Этот вектор был впервые введен на рассмотрение выдающимся русским физиком Н.А.Умовым и называется вектором Умова. Вектор (6.10), как и плотность энергии w, различен в разных точках пространства, а в данной точке изменяется со временем по закону квадрата синуса. Его среднее значение равно . Данное выражение, так же как и (11.82), справедливо для волны любого вида (сферической, затухающей и т.д.). 14. Интерференция волн Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов связывают с понятием когерентности. Волны называются когерентными, если они имеют постоянную разность фаз. На рис.11.15 показана картина интерференции, наблюдаемая в случае, когда в воду бросают два камня. Рис.11.15 Рассмотрим интерференцию двух волн одинаковой амплитуды, исходящих из когерентных источников и и встречающихся в точке Р (рис.11.16).
Согласно уравнению волны, смещения, вызванные в точке Р первой и второй волнами, равны соответственно и . Тогда результат сложения определится разностью фаз . Если , то в точке Р будет максимум: колебания максимально усилят друг друга и результирующая амплитуда будет равна 2А. Если же, то в точке Р будет минимум: колебания взаимно погасятся и результирующая амплитуда будет равна нулю. Условия максимума и минимума можно записать еще и так: (11.87) (11.88) Разность называется разностью хода волн или разностью хода лучей. Следовательно, в точке Р будет максимум, если разность хода волн составляет четное число полуволн; если разность хода волн составляет нечетное число полуволн, то в точке Р будет минимум. Так как волны распространяются по всем направлениям, то в пространстве наблюдаем чередование областей усиления и уменьшения колебаний. Это явление и представляет собой интерференционную картину. 15. Стоячие волны Особым случаем интерференции являются стоячие волны – это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами. Для вывода уравнения стоячей волны предположим, что две плоские волны распространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат выберем в точке, в которой обе волны имеют одинаковую фазу, а отсчет времени начнем с момента, когда фазы обеих волн равны нулю. Тогда уравнения волны, распространяющейся вдоль положительного направления оси х, и волны, распространяющейся ей навстречу, соответственно будут иметь вид (11.89) Сложив эти уравнения, получим уравнение стоячей волны: (11.90) Из уравнения стоячей волны (11.90) вытекает, что в каждой точке этой волны происходят колебания той же частоты с амплитудой , зависящей от координаты х рассматриваемой точки. В точках среды, где (11.91) амплитуда колебаний достигает максимального значения, равного 2 А. В точках среды, где (11.92) амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна, называются пучностями стоячей волны, а точки, в которых амплитуда колебаний равна нулю, называются узлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают. Из выражений (11.91) и (11.92) можно получить соответственно координаты пучностей и узлов: (11.93) (11.94) Можно показать, что расстояния между двумя соседними пучностями и двумя соседними узлами одинаковы и равны . Расстояние между соседними пучностью и узлом стоячей волны равно . В отличие от бегущей волны, все точки которой совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе (в уравнении (11.89) бегущей волны фаза колебаний зависит от координаты х рассматриваемой точки), все точки стоячей волны между двумя узлами колеблются с разными амплитудами, но с одинаковыми фазами (в уравнении (11.90) стоячей волны аргумент косинуса не зависит от х). При переходе через узел множитель меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на , т.е. точки, лежащие по разные стороны от узла, колеблются в противофазе. Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Например, если конец веревки закрепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и образует стоячую волну. На границе, где происходит отражение волны, в данном случае получается узел. Будет ли на границе отражения узел или пучность, зависит от соотношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения получается пучность (рис. 11.17, а), если более плотная – узел (рис. 11.17, б). Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний противоположных направлений, в результате чего получается узел. Если же волна отражается от менее плотной среды, то изменения фазы не происходит и у границы колебания складываются с одинаковыми фазами – получается пучность. Если рассматривать бегущую волну, то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, так какпадающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Поэтому полная энергия результирующей стоячей волны, заключенной между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных половине длины волны, происходят взаимные превращения кинетической энергии в потенциальную и обратно.
|