Главная страница
Навигация по странице:

  • 5.1.12. Множество рибосом, присоединившихся к одной молекуле мРНК, образуют полисому [11]

  • 10-25 5.1.13. Общая скорость белкового синтеза регулируется у эукариот факторами инициации [12]

  • 5.1.15. Многие ингибиторы белкового синтеза прокариот-эффективные антибиотики [14]

  • Таблица 5-1. Ингибиторы синтеза белка или РНК Ингибитор Специфический эффект

  • 5.1.16. Эволюция белкового синтеза [15]

  • Молекулярная биология клетки. Том 1. Молекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology


    Скачать 25.6 Mb.
    НазваниеМолекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology
    АнкорМолекулярная биология клетки. Том 1.pdf
    Дата22.04.2017
    Размер25.6 Mb.
    Формат файлаpdf
    Имя файлаМолекулярная биология клетки. Том 1.pdf
    ТипДокументы
    #5292
    страница39 из 79
    1   ...   35   36   37   38   39   40   41   42   ...   79
    кэпа,
    состоящего из остатка 7-метилгуанозина, связанного с трифосфатом (рис. 5-24), а к 3'-концу - фрагмента, состоящего приблизительно из 200 остатков адениловой кислоты (polyA). Играет ли polyA какую-нибудь роль в процессе трансляции, мы пока не знаем. Что же касается кэпа на 5'- конце, то он для эффективного белкового синтеза необходим. Опыты с экстрактами эукариотических клеток показали, что малая рибосомная субъединица присоединяется к 5'-концу цепи мРНК, чему способствует узнавание ею 5'-кэпа (рис. 5.22). Затем эта малая субъединица, несущая связанную с нею инициаторную тРНК, перемещается вдоль цепи мРНК в поисках старт-кодона AUG. Требования к старт-кодону не являются, по- видимому, слишком жесткими: необходимо всего несколько дополнительных нуклеотидов помимо самого триплета AUG. У большинства видов
    РНК используется первый подходящий кодон AUG поблизости от 5'-конца, при этом ни один из многих других триплетов AUG в цепи мРНК служить точкой инициации полипептид-

    270
    Рис. 5-24
    . 5'-Кэп, имеющийся в молекулах мРНК у эукариот. Отметим необычную 5' → 5'-связь с положительно заряженным остатком 7- метилгуанозина и метилирование 2'-гидроксила первого остатка рибозы в РНК. (Второй остаток рибозы метилирован не всегда.) ной цепи уже не может. Поэтому на данной молекуле мРНК синтезируется, как правило, лишь один какой-нибудь вид полипептидной цепи. По всем этим признакам прокариотические мРНК совершенно отличны от эукариотических (рис. 5-25). У бактериальных матриц 5'-кэп отсутствует.
    Вместо этого они содержат специфические инициаторные последовательности примерно из шести нуклеотидов, встречающиеся на протяжении одной и той же цепи мРНК неоднократно в разных ее участках. Такие последовательности располагаются обычно перед очередным триплетом
    AUG, отделенные от него несколькими (от 4 до 7) нуклеотидами; они спариваются со специфическим участком рРНК рибосомы и это служит сигналом для инициации синтеза белка у ближайшего старт-кодона. Более того, хотя бактериальные рибосомы и узнают терминирующие кодоны как сигналы для окончания синтеза одной полипептидной цепи, они могут «проскользнуть» дальше по матрице. Поэтому бактериальные мРНК обычно
    полицистронны,
    т.е. кодируют многие белки, синтезируемые на одной и той же молекуле
    Рис. 5-25
    . Сравнение структуры прокариотической и эукариотической мРНК. В момент завершения синтеза обе эти мРНК имеют на 5'-конце трифосфат, но эукариотическая мРНК немедленно вслед за тем приобретает 5'-кэп. У эукариот малая рибосомная субъединица узнает 5'-конец мРНК именно благодаря 5'-кэпу. Поэтому синтез белка начинается со старт-кодона, ближайшего к 5'-концу (см. рис. 5-22). В отличие от этого у прокариот 5'-конец не имеет особого значения и рибосомы могут присоединяться ко многим участкам нити мРНК, что всякий раз дает начало синтезу иного белка.

    271
    Рис. 5-26
    . Схематическое изображение полирибосомы, показывающее, как ряд рибосом одновременно осуществляет трансляцию на одной и той же молекуле мРНК. В эукариотических клетках синтез каждой полипептидной цепи начинается с присоединения малой рибосомной субъединицы к единственному подходящему для этого участку на молекуле мРНК и трансляция идет вдоль этой молекулы в направлении 5' → 3'. По завершении данной полипептидной цепи обе субъединицы рибосомы отделяются от молекулы мРНК. мРНК. В отличие от них эукариотические мРНК, как правило,
    моноцистронны,
    иными словами, на одной такой молекуле мРНК может идти синтез только одного вида полипептидной цепи (рис. 5.25).
    5.1.12. Множество рибосом, присоединившихся к одной молекуле мРНК, образуют полисому [11]
    Синтез одного белка длится в среднем от 20 до 560 секунд. Однако даже за этот очень короткий период на каждой молекуле мРНК, где идет процесс трансляции, инициация синтеза обычно осуществляется многократно. Новая рибосома присоединяется к 5'-концу молекулы мРНК сразу же после того, как предыдущая свяжет между собой достаточное количество аминокислот, чтобы освободить ей место. Молекулы мРНК в этом случае входят в состав
    полирибосом
    (или полисом) - структур, в которых на одну молекулу мРНК нанизано много рибосом, отстоящих друг от друга на расстояние приблизительно в 80 нуклеотидов (рис. 5-26 и 5-27). У прокариот (в отличие от эукариот) рибосомы могут присоединяться к мРНК, как только она образовалась. Они начинают синтез белка на 5'-конце новой молекулы мРНК и движутся вслед за РНК-полимеразой, достраивающей цепь мРНК.
    Полирибосомы весьма характерны для клеток. От находящихся в цитозоле свободных рибосом их отделяют ультрацентрифугированием
    Рис. 5-27.
    Электронные микрофотографии типичных полирибосом, осуществляющих синтез белка в эукариотической клетке.
    А.
    Глубокое травление. (С любезного разрешения John Heuser.)
    Б.
    Тонкий срез. Цитоплазма клетки обычно заполнена такими полирибосомами лежащими в цитозоле свободно или прикрепленными к мембранам. (С любезного разрешения George Palade.)

    272
    Рис. 5-28
    . Отделение полирибосом от свободных рибосом (и от их субъединиц) с помощью центрифугирования. Метод основан на том, что крупные молекулярные агрегаты движутся в сильном гравитационном поле быстрее, нежели мелкие. Обычно седиментацию проводят в градиенте сахарозы, чтобы стабилизировать раствор - предотвратить его перемешивание за счет конвекции. после лизиса клеток (рис. 5-28). Выделенную из полирибосомы мРНК можно использовать, чтобы убедиться в том, что белок, кодируемый данной последовательностью ДНК, активно синтезируется клетками, из которых были получены полирибосомы. Она может послужить также исходным материалом для создания специальных библиотек кДНК (см. разд. 5.6.3).
    10-25
    5.1.13. Общая скорость белкового синтеза регулируется у эукариот факторами инициации [12]
    Известно (подробнее об этом см. гл. 13), что клетки многоклеточного организма размножаются только тогда, когда они находятся в соответствующем окружении и на них воздействуют специфические факторы роста. Механизм действия этих факторов роста не совсем ясен, но несомненно, что одним из главных эффектов должно быть увеличение общей скорости белкового синтеза (см. разд. 13.3.4). Чем определяется эта скорость? Прямые исследования на тканях крайне сложны, но если клетки в культуре не получают достаточного количества питательных веществ, то резко снижается скорость инициации синтеза полипептидных цепей, причем можно показать, что это торможение обусловливается инактивацией одного из факторов инициации белкового синтеза, а именно IF-2. Показано, что по крайней мере у одного типа клеток (в незрелых эритроцитах) активность IF-2 снижается контролируемым образом в результате фосфорилирования одной из трех его белковых субъединиц. Можно предположить поэтому, что скорость белкового синтеза у эукариот регулируется в известной степени специфическими протеинкиназами, которые в своей активной форме тормозят его инициацию. Возможно, что действие факторов роста осуществляется при посредстве каких-то регуляторных веществ, которые инактивируют эти протеинкиназы или нейтрализуют их эффект.
    У эукариот факторы инициации, необходимые для синтеза белка, более многочисленны и более сложны, нежели у прокариот, хотя и у тех, и у других они выполняют одни и те же основные функции. Многочисленные дополнительные компоненты, возможно, представляют собой регуляторные белки, реагирующие на разные факторы роста и координирующие рост и размножение клеток в многоклеточных организмах. У бактерий нет потребности в такой регуляции: они растут с той скоростью, какую допускает наличие в среде питательных веществ.
    5-9
    5.1.14. Точность белкового синтеза обеспечивается двумя различными механизмами [13]
    Судить о частоте ошибок в процессе белкового синтеза можно, определив, как часто включается в данный белок какая-нибудь аминокислота, в норме в нем отсутствующая. Наблюдения показывают, что в среднем на каждые 10 4
    аминокислот включается одна «неправильная» аминокислота, и, значит, только одна ошибка приходится на каждые 25 синтезируемых белков среднего размера (400 аминокислот). Точность процесса декодирования зависит от надежности двух адапторных механизмов, о которых мы уже говорили выше: от связывания каждой аминокислоты с соответствующей молекулой тРНК и от спаривания кодонов в мРНК с антикодонами тРНК (см. рис. 5-12). Неудивительно, что в ходе эволюции в клетках возникли механизмы, которые обеспечивают снижение числа ошибок на этих двух ключевых этапах белкового синтеза.
    Два механизма, действующие на этих двух этапах, совершено

    273
    Рис. 5-29.
    Более подробное изображение первого этапа фазы элонгации белкового синтеза, позволяющее видеть, как отбирается на рибосоме правильная тРНК. На начальной стадии связывания молекула аминоацил-тРНК с присоединенным фактором элонгации временно спаривается с кодоном в А-участке. Спаривание служит сигналом для гидролиза GTP, вызываемого фактором элонгации, благодаря этому фактор элонгации получает возможность отделиться от молекулы аминоацил-тРНК, которая теперь стоит точно на своем месте в А-участке и может сыграть предназначенную ей роль в элонгации полипептидной цепи (см. рис. 5-20). Только тРНК с правильным антикодоном остаются спаренными с мРНК достаточно долго для того, чтобы участвовать в элонгации цепи. Фактор элонгации (имеющий белковую природу) у прокариот обозначается EF-Tu
    (ФЭ-Tu), а у эукариот-EF-1 (ФЭ-1). различны; каждый из них отражает стратегию, используемую клеткой в других процессах. Оба механизма сопряжены, однако, с затратой свободной энергии, поскольку, как уже отмечалось в гл. 2 (см. разд. 2.2), за всякое возрастание упорядоченности приходится платить. Надежность связывания аминокислоты с тРНК обеспечивается сравнительно простым механизмом. У многих аминоацил-тРНК-синтетаз имеется два отдельных активных центра: один, ответственный за реакцию, в результате которой тРНК нагружается аминокислотой (рис. 5-10), и другой, распознающий неправильную аминокислоту, присоединившуюся к тРНК, и удаляющий ее путем гидролиза. Подобный процесс коррекции обходится дорого, поскольку работать эффективно он может лишь в том случае, если будет удалять заодно и довольно значительное число правильно присоединившихся аминокислот. Аналогичный дорогостоящий двухэтапный процесс коррекции используется и в репликации ДНК (см. разд. 5.3.3).
    Точность спаривания кодона с антикодоном обеспечивается более тонким механизмом «кинетической коррекции». Ранее мы ограничивались лишь упрощенным описанием этого спаривания. В действительности, после того как молекулы тРНК присоединят соответствующую аминокислоту, они образуют комплекс с особым белком, так называемым
    фактором элонгации
    (ФЭ, EF), который прочно связывается с аминоацильным концом молекулы тРНК и с молекулой GTP. Именно этот комплекс, а не свободная молекула тРНК спаривается с надлежащим кодоном в молекуле мРНК. Связанный таким образом фактор элонгации обеспечивает возможность правильного спаривания антикодона с кодоном, но при этом препятствует включению данной аминокислоты в растущую полипептидную цепь. Однако начальное узнавание кодона служит для фактора элонгации сигналом к гидролизу связанного с ним GTP (до GDP и неорганического фосфата), после чего сам фактор отделяется от рибосомы без своей тРНК, так что синтез

    274
    белка может продолжиться. Из рис. 5-29 видно, что благодаря фактору элонгации возникает короткий разрыв во времени между спариванием антикодона с кодовом и элонгацией полипептидной цепи, что позволяет присоединившейся молекуле тРНК отделиться от рибосомы. Неправильная молекула тРНК образует в паре кодон-антикодон меньше водородных связей, чем правильная; поэтому она слабее удерживается на рибосоме и, значит, за данный промежуток времени имеет больше шансов отделиться. Поскольку из-за вызванной фактором элонгации задержки большая часть неправильно присоединившихся молекул тРНК удаляется с рибосомы и не используется в белковом синтезе, ясно, что этот фактор снижает долю неправильных аминокислот в синтезируемом белке.
    5.1.15. Многие ингибиторы белкового синтеза прокариот-эффективные антибиотики [14]
    Многие из наиболее эффективных антибиотиков, применяемых в современной медицине, действуют, подавляя в бактериальных клетках синтез белка. Ряд таких лекарственных препаратов создан с учетом структурных и функциональных различий между рибосомами прокариот и эукариот, т. е. с расчетом на то, что они будут действовать преимущественно на прокариотические рибосомы. Именно в силу избирательности их действия эти соединения можно назначать человеку в относительно
    Таблица 5-1.
    Ингибиторы синтеза белка или РНК
    Ингибитор
    Специфический эффект
    Эффективен только для прокариот
    1
    Тетрациклин
    Блокирует связывание аминоацил-тРНК с А-участком рибосомы
    Стрептомицин
    Препятствует переходу от инициаторного комплекса к рибосоме, осуществляющей удлинение цепи; нарушает декодирование
    Хлорамфеникол
    Блокирует пептидил-трансферазную реакцию на рибосомах (2-й этап на рис. 5-20)
    Эритромицин
    Блокирует реакцию транслокации на рибосомах (3-й этап на рис. 5-20)
    Рифамицин
    Блокирует инициацию цепей РНК, присоединяясь к РНК-полимеразе (препятствует синтезу
    РНК)
    Эффективен и для прокариот, и для
    эукариот
    Пуромицин Актиномицин D
    Присоединяясь к растущему концу синтезируемой полипетидной цепи, вызывает ее преждевременное отделение от рибосомы Связывается с ДНК и блокирует перемещение РНК- полимеразы (препятствует синтезу РНК)
    Эффективен только для эукариот
    Циклогексимид
    Блокирует реакцию транслокации на рибосомах (3-й этап на рис. 5-20)
    Анизомицин
    Блокирует пептидил-трансферазную реакцию на рибосомах (2-й этап на рис. 5-20) 1
    α-Аманитин
    Блокирует синтез мРНК вследствие преимущественного связывания с РНК-полимеразой II
    1)
    Рибосомы в митохондриях (и хлоропластах) эукариот по своей чувствительности к ингибиторам часто близки к рибосомам прокариот.

    275
    высоких концентрациях, не опасаясь токсических эффектов. Разные антибиотики связываются с различными участками бактериальных рибосом и поэтому часто ингибируют разные этапы процесса синтеза. В табл. 5-1 перечислены наиболее известные соединения этой группы и указано их специфическое действие. В таблицу включены также и некоторые другие часто применяемые ингибиторы белкового синтеза, в том числе и такие, которые действуют на эукариотические клетки; эти последние, разумеется, в качестве антибиотиков применять нельзя.
    Многие из соединений, перечисленных в табл. 5-1, блокируют совершенно определенные этапы передачи генетической информации от
    ДНК к белку, поэтому они находят широкое применение при изучении различных клеточных механизмов. Среди лекарственных препаратов, используемых для этой же цели, следует назвать
    хлорамфеникол, циклогексимид
    и
    пуромицин.
    Все они ингибируют белковый синтез специфическим образом. Хлорамфеникол, например, в эукариотических клетках ингибирует белковый синтез только на рибосомах в митохондриях
    (и в хлоропластах растений), что, возможно, отражает происхождение этих органелл от прокариот (см. разд. 7.5.16). Циклогексимид, наоборот, действует только на рибосомы в цитозоле. Различная чувствительность белкового синтеза к этим двум препаратам позволяет весьма надежно определять, в каком именно клеточном компартменте идет трансляция с образованием того или иного белка. Особенно интересен пуромицин, поскольку он по своей структуре весьма напоминает концевой аминоациладенилат в составе аминоацил-тРНК и потому реагирует на рибосоме с С- концом растущей пептидил-тРНК, как это должно было бы произойти с соответствующей аминокислотой. Дальнейшая элонгация, однако, в результате этого становится невозможной - происходит преждевременный обрыв цепи и пептидилпуромицин покидает рибосому. Естественно поэтому, что пуромицин ингибирует все виды белкового синтеза.
    5.1.16. Эволюция белкового синтеза [15]
    Молекулярные процессы, лежащие в основе синтеза белка, необъяснимо сложны. Хотя мы теперь в состоянии многие из них описать, смысл их остается для нас непонятным в отличие, например, от процессов транскрипции, репарации и репликации ДНК. Как мы уже знаем, синтез белка у современных организмов происходит на очень крупном рибонуклеопротеиновом комплексе - на рибосоме, состоящей из различных белков, группирующихся вокруг сердцевины из молекул рРНК. Зачем вообще нужны молекулы рРНК и как случилось, что они приобрели главенствующую роль в структуре и функции рибосом? Ответ на этот вопрос, несомненно, поможет нам лучше понять и сам белковый синтез. Ранее, до того как в начале 60-х годов была открыта мРНК, предполагалось, что значительные количества РНК в рибосомах несут информативную функцию - осуществляют передачу генетической информации от ДНК к белкам. Теперь, однако, мы знаем, что во всех рибосомах клетки имеется один и тот же набор молекул рРНК и что эти молекулы такой информативной роли не играют. В отношении бактериальных рибосом удалось выяснить, что отдельные небольшие участки рРНК выполняют каталитические функции в белковом синтезе; установлено, например, что рРНК малой субъединицы прокариотических рибосом при спаривании с инициаторной последовательностью в молекуле мРНК образует короткую спираль, что помогает поместить соседний старт-кодон AUG в Р-участок. Аналогичные взаимодействия на основе спаривания возможны также между молекулами тРНК и рРНК, хотя убедительно продемонстрировать это пока не удалось.

    276
    В белковом синтезе важную роль играет также большое число различных белков, связанных с рРНК рибосом. Чрезвычайная сложность процесса, в который вовлечено столько компонентов, заставила многих биологов разувериться в том, что когда-нибудь будут поняты пути его эволюции. Однако недавнее открытие - обнаружение молекул РНК, способных действовать как ферменты (см. разд. 3.2. 11), - позволило по-новому взглянуть на данный предмет. Как уже отмечалось в гл. 1, в первых биологических реакциях катализаторами могли служить не белковые молекулы, а молекулы РНК. Возможно, что на ранних этапах. в первых клетках, молекулы тРНК сами, без участия аминоацилт РНК-синтетаз, формировали каталитические поверхности, которые позволяли им связывать и активировать аминокислоты. Не исключено, что в то время роль целой
    «рибосомы» выполняли молекулы рРНК, свертывавшиеся таким образом, что возникала сложная система поверхностей, обеспечивающая и направленное спаривание тРНК с кодонами мРНК, и катализ полимеризации связанных с тРНК аминокислот (см. рис. 1-7). В ходе эволюции к этому аппарату могли присоединяться отдельные белки, каждый из которых делал рассматриваемый процесс более надежным и эффективным.
    Высокая доля РНК в современных рибосомах, вероятно, сохранилась от тех очень ранних этапов эволюции, когда белки еще не занимали главного места в биологическом катализе.
    1   ...   35   36   37   38   39   40   41   42   ...   79


    написать администратору сайта