Главная страница
Навигация по странице:

  • Действие механических факторов

  • Действие термических факторов

  • Действие высокой температуры.

  • Действие электрического тока. Электротравма

  • Повреждающее действие атмосферного давления

  • Таблица Глубина погружения под воду, м

  • Экстремальные состояния

  • зайко. Н. Н. Зайко Патологическая физиология Введение Предмет и задачи патологической физиологии Патологическая физиология есть наука, изучающая жизнедеятельность больного организма. Программа


    Скачать 7.32 Mb.
    НазваниеН. Н. Зайко Патологическая физиология Введение Предмет и задачи патологической физиологии Патологическая физиология есть наука, изучающая жизнедеятельность больного организма. Программа
    Анкорзайко.doc
    Дата20.09.2017
    Размер7.32 Mb.
    Формат файлаdoc
    Имя файлазайко.doc
    ТипПрограмма
    #8817
    страница3 из 46
    1   2   3   4   5   6   7   8   9   ...   46
    Глава 3. Патогенное действие факторов внешней среды 

    Многочисленные факторы внешней среды (физические, химические, биологические), с которыми постоянно сталкивается человек, могут стать болезнетворными, если сила их воздействия превосходит адаптационные возможности организма, а также в случае изменения его реактивности.

    Действие механических факторов

    Механическая травма – это повреждение тканей твердыми телами или распространением взрывной волны. Характер повреждения может быть различным и местно проявляется в виде разрывов, ушибов, переломов, раздавливания или их комбинации. Местные последствия зависят также от сочетания травмы с кровопотерей, разрывом кожи, повреждением нервных стволов. Еще большее значение имеют общие нарушения, которые в тяжелой степени проявления носят характер травматического шока (см. Глава XIX "Патологическая физиология системного кровообращения").

    Действие термических факторов

    Действие низкой температуры на организм может привести к снижению температуры тела и развитию патологического процесса – гипотермии.

    В развитии гипотермии различают две стадии. Сначала, несмотря на низкую температуру окружающей среды, температура тела не снижается, а поддерживается на исходном уровне благодаря включению компенсаторных реакций, обусловливающих перестройку терморегуляции. Этот период охлаждения называется стадией компенсации. Из большого разнообразия терморегуляторных приспособлений в первую очередь включаются механизмы физической терморегуляции, направленные на ограничение теплоотдачи. Отдача тепла в окружающую среду, как известно, совершается путем излучения, конвекции, проведения и испарения. В условиях холода теплоотдача ограничивается благодаря спазму сосудов кожи и уменьшению потоотделения. У животных важную роль играет шерсть (волоски поднимаются и образуется теплоизолирующий слой воздуха). У человека эта реакция сохранилась в рудиментарном виде ("гусиная" кожа) и, естественно, не имеет значения в поддержании температуры тела, а только свидетельствует о напряжении механизмов терморегуляции. Очень характерно изменение позы животного, которое на холоде "сворачивается в клубок". Этих реакций, направленных на уменьшение отдачи тепла, может быть достаточно для сохранения температуры тела.

    При более интенсивном и продолжительном действии холода включаются механизмы химической терморегуляции, направленные на увеличение теплопродукции. Появляется мышечная дрожь, усиливается обмен веществ, увеличивается распад гликогена в печени и мышцах, повышается содержание глюкозы в крови. Потребление кислорода увеличивается, усиленно функционируют системы, обеспечивающие доставку кислорода к тканям.

    Обмен веществ не только повышается, но и перестраивается. Дополнительный выход энергии в виде тепла обеспечивается как за счет усиления окислительных процессов, так и за счет разобщения окисления и сопряженного с ним фосфорилирования. Этот механизм способствует экстренному согреванию, однако, как известно, связан с уменьшением количества макроэргов, необходимых для осуществления функций. Следовательно, разобщение окисления и фосфорилирования не может обеспечить длительную адаптацию к холоду и тем более активную деятельность в условиях холода. Последнее может быть достигнуто путем увеличения мощности митохондриальной системы. Экспериментально доказано, что у животных, адаптированных к холоду, повышена активность ферментов цикла трикарбоновых кислот и дыхательной цепи, а электронно-микроскопически обнаружено увеличение количества митохондрий. Биогенез этих органелл связан с активизацией генетического аппарата клетки, увеличением синтеза нуклеиновых кислот и белка (Ф. 3. Меерсон).

    Сложная перестройка в организме, обеспечивающая постоянство температуры тела в условиях холода, происходит при участии нейрогуморальных регуляторных механизмов, которые схематически можно представить следующим образом.

    Терморецепторы кожи воспринимают холодовое раздражение и по чувствительным путям посылают импульсы в гипоталамус, где расположен центр терморегуляции, и в высшие отделы центральной нервной системы. Отсюда в обратном направлении поступают сигналы к различным органам и системам, принимающим участие в поддержании температуры тела. По двигательным нервам импульсы поступают к мышцам, в которых развиваются терморегуляторный тонус и дрожь. По симпатическим нервам возбуждение достигает мозгового вещества надпочечников, где усиливается секреция адреналина. Адреналин способствует сужению периферических сосудов и стимулирует распад гликогена в печени и в мышцах. Важным фактором является включение в терморегуляцию гипофиза, а через его тропные гормоны – щитовидной железы и коры надпочечников. Гормон щитовидной железы повышает обмен веществ, увеличивает теплопродукцию, активизирует биогенез митохондрий. Гликокортикоиды стимулируют образование углеводов из белков.

    В условиях длительного или интенсивного действия холода возможно перенапряжение и истощение механизмов терморегуляции, после чего температура тела снижается и наступает вторая стадия охлаждения – стадия декомпенсации, или собственно гипотермия.

    В этом периоде, кроме снижения температуры тела, отмечается снижение обменных процессов и потребления кислорода; жизненно важные функции угнетены. Нарушение дыхания и кровообращения приводит к кислородному голоданию, угнетению функций центральной нервной системы, снижению иммунологической реактивности. В тяжелых случаях возможны необратимые изменения в тканях, приводящие к смерти.

    Во второй стадии гипотермии тесно переплетены явления патологические и приспособительные. Более того, одни и те же сдвиги, являясь, с одной стороны, патологическими, с другой, могут быть оценены как приспособительные. Например, угнетение функций центральной нервной системы можно назвать охранительным, так как понижается чувствительность нервных клеток к недостатку кислорода и дальнейшему снижению температуры тела. Снижение обмена веществ в свою очередь уменьшает потребность организма в кислороде.

    Чрезвычайно интересен тот факт, что в состоянии гипотермии организм становится менее чувствительным к самым разнообразным неблагоприятным воздействиям внешней среды – недостатку кислорода и пищи, интоксикации, инфекции, поражающему действию электрического тока, ионизирующей радиации.

    Действие высокой температуры.

    В условиях повышения температуры и влажности воздуха отдача тепла из организма в окружающую среду затруднена и может совершаться только при напряжении механизмов физической терморегуляции (расширение периферических сосудов, усиление потоотделения). При повышении температуры воздуха до 33°С (что равно температуре кожи) отдача тепла путем проведения и излучения становится неэффективной и совершается только путем испарения, а при повышении влажности воздуха затрудняется и этот путь отдачи тепла. При таких обстоятельствах нарушается равновесие между образованием тепла в организме и его отдачей во внешнюю среду, что приводит к задержке тепла и перегреванию.

    Тот период перегревания, который характеризуется сохранением нормальной температуры тела, называется стадией компенсации.

    Перенапряжение терморегуляции приводит к ее истощению, а наступающее вслед за этим повышение температуры тела свидетельствует о наступлении второго периода перегревания – стадии декомпенсации.

    Повышение температуры тела сопровождается резким возбуждением центральной нервной системы, дыхания и кровообращения, усилением обмена веществ. Дальнейшее повышение температуры тела и перевозбуждение нервных центров могут закончиться их истощением, нарушением дыхания, функции сердца и снижением артериального давления. Развивается гипоксия.

    Обильное потоотделение имеет отрицательные последствия – обезвоживание, нарушение электролитного обмена (потеря хлоридов). Сгущение крови и повышение ее вязкости создают дополнительную нагрузку на аппарат кровообращения и способствуют развитию недостаточности сердца. На фоне нарастающих явлений кислородного голодания появляются судороги, наступает смерть. Острое перегревание с быстрым повышением температуры тела носит название теплового удара.

    Ожог возникает при местном воздействии высокой температуры и проявляется в виде местных деструктивных и реактивных изменений, тяжесть которых разделяют на четыре степени:

    1. I – покраснение кожи (эритема), слабая воспалительная реакция без нарушения целостности кожи;

    2. II – острое экссудативное воспаление кожи, образование пузырей с отслоением эпидермиса;

    3. III – частичный некроз кожи и образование язв;

    4. IV – обугливание тканей, некроз, распространяющийся за пределы кожи.

    Но было бы неправильно рассматривать ожог как исключительно местное явление. Нередко опасность общих нарушений может превышать значение местных изменений – это уже ожоговая болезнь.

    В клиническом течении ожоговой болезни различают следующие стадии: ожоговый шок, ожоговая токсемия, ожоговая инфекция, ожоговое истощение, исход.

    В развитии ожогового шока главную роль следует отвести болевому фактору и чрезмерной афферентной импульсации в центральную нервную систему. Перераздражение и последующее истощение нервных центров нарушают регуляцию сосудистого тонуса, дыхания и функции сердца.

    Развитию шока способствует интоксикация, которая при ожогах выражена очень сильно. Ожоговые токсины появляются в организме в результате нарушения обмена веществ, но больше всего их образуется на месте повреждения. Из поврежденных тканей в общий кровоток поступают денатурированный белок и токсические продукты его ферментативного гидролиза.

    Тяжелым осложнением ожоговой болезни является обезвоживание. Потеря белков и жидкости происходит главным образом на месте поражения как результат повышения проницаемости стенки сосудов. Сгущение крови и повышение ее вязкости затрудняют кровообращение и работу сердца.

    Значительно нарушается водно-электролитный обмен. В первые же часы после нанесения ожога поврежденные ткани задерживают большое количество натрия, затем натрий и вода переходят в клеточное пространство, покидая плазму крови. Развивается клеточная гипергидратация. Это обстоятельство надо учитывать при назначении изотонического раствора натрия хлорида с лечебной целью при ожоговом шоке.

    Перераспределение калия при ожоге заключается в выходе его из клеточного пространства в плазму. Эффект гиперкалиемии состоит в нарушении сократительной способности миокарда и сердечного автоматизма.

    Наблюдается уменьшение активности тканевых дыхательных ферментов, что при ожоговой болезни наряду с нарушением дыхания и кровообращения объясняет причину развития кислородного голодания.

    Серьезные нарушения претерпевает белковый обмен. Наиболее характерны огромные потери белков на месте повреждения, а также генерализованный распад их в организме. Под влиянием протеолитических ферментов, которые попадают в кровь из поврежденных клеток, могут меняться антигенные свойства тканей. Ожоговые антигены являются причиной аутоиммунизации организма.

    Инфекция – постоянный спутник ожоговой болезни. Она усиливает интоксикацию организма. Источниками инфицирования являются поврежденные ткани и содержимое кишок. Это осложнение объясняется снижением барьерных свойств организма, в частности гибелью кожи, нарушением функции системы мононуклеарных фагоцитов, изменением защитных свойств слизистой оболочки пищевого канала.

    При ожоговом истощении организм страдает от прогрессирующей кахексии, отеков, анемии, дистрофических изменений во внутренних органах, осложнений (пневмония, гломерулонефрит), истощения функции коркового вещества надпочечных желез.

    Выздоровление характеризуется полным отторжением некротических тканей, заполнением дефекта грануляциями, рубцеванием и эпителизацией.

    Действие электрического тока. Электротравма 

    Поражающее действие электрического тока зависит от его физических параметров, пути прохождения и от физиологического состояния организма.

    В отношении электрических свойств организм представляет собой неодинаковый и довольно плохой проводник. Жидкие среды – хорошие проводники, а эпидермис, связки и кости являются диэлектриками.

    Среди многих факторов, определяющих тяжесть электротравмы, первостепенное значение имеет поражение жизненно важных органов, расположенных на пути прохождения тока.

    Наиболее опасно прохождение тока через сердечную мышцу. При этом развивается фибрилляция сердца, которая у человека спонтанно не проходит. У некоторых лабораторных животных (крысы) фибрилляция сердца обратима. Нарушение функции сердца и асистолия могут возникнуть и в тех случаях, когда электрический ток через сердечную мышцу не проходит. Такие явления могут быть результатом рефлекторного нарушения венечного кровообращения или повышения тонуса блуждающего нерва.

    Остановка дыхания отмечается немедленно после прохождения тока по трансбульбарной петле, после чего наступает паралич дыхательного центра. Возможно и рефлекторное перераздражение дыхательного центра с последующим его параличом. Спазм дыхательных мышц и голосовой щели тоже прекращает или резко затрудняет дыхание.

    В основе сложных реакций организма на электротравму лежат первичные физические и химические изменения в тканях на пути прохождения тока, а они в свою очередь являются следствием перехода электрической энергии в другие виды – химическую, тепловую и механическую.

    Проходя через биологические среды, электрический ток производит поляризацию атомов и молекул, изменяет пространственную ориентировку заряженных частиц и усиливает их движение. Электрическая энергия переходит в тепловую.

    Нарушение целостности тканей вплоть до разрывов и даже переломов костей – проявление механического действия тока.

    Смещение ионов (электролиз) и изменение их концентрации у клеточных мембран нарушают в тканях биотоки действия, а также служат причиной появления биопотенциалов повреждения. Последние вызывают патологическое раздражение возбудимых структур, например, нервных и мышечных волокон. Электрический ток изменяет также состояние коллоидов, которые, как известно, представляют собой взвешенные заряженные частицы.

    Таким образом, патогенез электротравмы заключается в комбинации электрохимического, электротермического и электромеханического действия.

    Повреждающее действие атмосферного давления

    Действие пониженного атмосферного давления человек испытывает по мере подъема на высоту в самолете, в горах. В лабораторных условиях такое состояние моделируется в барокамере путем искусственного разрежения воздуха. Патологические изменения, возникающие при этом, обусловлены двумя основными факторами - уменьшением парциального давления кислорода во вдыхаемом воздухе и понижением атмосферного давления (декомпрессией). Недостаток кислорода во вдыхаемом воздухе вызывает состояние, рассматриваемое в разделе XVII ("Гипоксия"). Комплекс явлений, связанных со снижением атмосферного давления, называется синдромом декомпрессии.

    От величины атмосферного давления, как известно, зависят некоторые физические свойства газов и жидкостей (объем и растворимость газов в жидкостях, точка кипения жидкостей). При снижении атмосферного давления газы, находящиеся внутри организма, расширяются, понижается их растворимость в жидкой среде, точка кипения крови и других жидкостей понижается до такой степени, что они могут закипеть при температуре тела. Выраженность этих явлений зависит от скорости декомпрессии и ее степени. У летчиков, совершающих полет в негерметической кабине, может возникнуть ряд симптомов, связанных с декомпрессией, - расширение воздуха в кишках (высотный метеоризм), боль в ушах и лобных пазухах в результате расширения воздуха, заполняющего эти полости, кровотечение из носа из-за разрыва мелких сосудов. На высоту 19 000 м нельзя подниматься без надежно герметизированной кабины, так как именно на этой высоте жидкость закипает при температуре тела.

    При быстром перепаде атмосферного давления развивается синдром взрывной декомпрессии. В его развитии имеет значение баротравма легких, сердца и крупных сосудов вследствие резкого повышения внутрилегочного давления. Разрыв альвеол и сосудов легкого приводит к проникновению газовых пузырьков в кровеносную систему (газовая эмболия). В случае разгерметизации космического корабля или высотного самолета происходит мгновенная смерть вследствие закипания крови и других жидкостей организма, а также в результате молниеносной формы гипоксии.

    Действие повышенного атмосферного давления человек испытывает при погружении под воду во время водолазных и кессонных работ. В результате вдавления барабанных перепонок может появиться боль в ушах. При резком и очень быстром повышении атмосферного давления возможен разрыв легочных альвеол. Однако гораздо большее значение имеет то обстоятельство, что в условиях гипербарии человек дышит воздухом или другими газовыми смесями под повышенным давлением, в результате чего в крови и тканях организма растворяется дополнительное количество газов (сатурация). При дыхании сжатым воздухом наибольшее значение имеет азот. Долгое время считалось, что азот как инертный газ не вызывает биологического эффекта, и только опыт подводной медицины доказал обратное. Именно азот вызывает синдром специфических нарушений у лиц, работающих под повышенным давлением. Количество азота в организме может увеличиваться в несколько раз, причем более всего в органах, богатых жирами. А так как большое количество липидов содержится в нервной ткани, то более всего поражается нервная система. Сначала это проявляется легким возбуждением, напоминающим эйфорию ("глубинный восторг"). В дальнейшем наступают явления наркоза и интоксикации. Для того чтобы избежать этих явлений, в подводные устройства подают кислородно-гелиевые смеси (гелий менее растворим в нервной ткани). Ниже показано нарушение функции центральной нервной системы в зависимости от глубины погружения под воду.

    Таблица

    Глубина погружения под воду, м

    Нарушения, возникающие у нетренированных людей

    30 - 60

    Эйфория

    60 - 75

    Беспричинный смех и первые признаки истерии. Ослабление способности к концентрации внимания. Ошибки при выполнении простых профессиональных и умственных задач. Недооценка личной опасности

    100

    Депрессия и потеря четкого мышления. Нарушение нервно-мышечной координации

    115

    Возможна потеря сознания 

    При повышенном давлении токсичен не только азот. Избыток кислорода (гипероксия) только в самом начале оказывает благоприятный эффект, улучшая процессы тканевого дыхания. В дальнейшем кислород начинает действовать токсически. Для каждой глубины погружения существует оптимальная концентрация кислорода во вдыхаемой смеси. Например, при погружении на глубину 100 м концентрация кислорода в газовой смеси должна составлять не более 2%.

    Механизм токсического действия кислорода под повышенным давлением заключается в следующем. Сначала развиваются реакции организма, направленные на поддержание оптимального кислородного режима в ткани головного мозга и ограничение чрезмерного повышения концентрации кислорода в нем. В формировании этих защитных реакций большое значение имеет снижение возбудимости хеморецепторов кровеносного русла, в результате чего урежаются дыхание и пульс, уменьшается объем циркулирующей крови, сужаются сосуды головного мозга.

    В дальнейшем может возникнуть своеобразное "удушение" тканей, связанное с тем, что молекула гемоглобина оказывается блокированной кислородом и теряет способность выводить углекислоту. Объясняется это тем, что ткани в первую очередь используют тот кислород, который физически растворен в плазме; это способствует диссоциации оксигемоглобина. Под повышенным давлением увеличивается содержание растворимого в крови кислорода. Так, например, при дыхании под давлением 506,5 кПа (5 атм) в крови растворяется дополнительно 3 об. % кислорода, что соответствует нормальному потреблению кислорода тканями в покое. При этом оксигемоглобин практически не диссоциирует и углекислота не выводится.

    Токсическое действие кислорода в высокой концентрации подобно таковому при радиоактивном облучении. В обоих случаях имеет место образование свободных радикалов и перекисных соединений с сильными окислительными свойствами и поражающим действием на ДНК и тканевые ферменты.

    Чувствительность организма к токсическому действию кислорода в значительной степени зависит от количества тканевых антиоксидантов (токоферолов, глутатиона, убихинона и др.), которые подавляют свободнорадикальное окисление. Они же могут быть использованы с лечебной и профилактической целью при действии на организм кислорода под повышенным давлением.

    При возвращении человека в условия нормального атмосферного давления (декомпрессия) наблюдается десатурация - выведение избыточного количества растворенных газов через кровь и легкие. Декомпрессию следует проводить медленно, чтобы скорость образования газов не превышала возможности легких по их выведению. В противном случае пузырьки воздуха, задерживаясь в крови и тканях, могут закупоривать кровеносные сосуды, оказывать давление на клетки, раздражать рецепторы (газовая эмболия). Клиническая картина такой болезни определяется локализацией газовых пузырьков. Наиболее часто отмечаются боль в суставах, зуд кожи, в тяжелых случаях - нарушение зрения, паралич, потеря сознания и другие признаки поражения головного и спинного мозга. Такой симптомокомплекс называется болезнью декомпрессии.

    Экстремальные состояния

    Усложнение производственной деятельности человека приводит к тому, что влияние вредных экзогенных факторов становится все интенсивнее и сопровождается большим эмоциональным напряжением. При освоении новых видов производственной деятельности, новых пространств, в том числе космического, человек сталкивается с такими патогенными факторами, с которыми ранее не встречался. В этих условиях может развиться крайне тяжелое состояние, при котором гибель организма наступает раньше, чем включаются, защитно-приспособительные механизмы и разовьется патофизиологический процесс в целом. Такое состояние получило название экстремального.

    При действии раздражителей, которые можно назвать чрезвычайными из-за их силы, продолжительности или необычности, требуется максимальное напряжение всего организма. Это стресс (см. раздел XXIV -'"Патологическая физиология эндокринной системы"). Первым звеном в развитии экстремального состояния нередко является боль (см. раздел XXV - "Патологическая физиология нервной системы"). Экстремальные состояния, различные по своей этиологии, имеют общие механизмы патогенеза и в крайней степени носят характер шока, коллапса, комы, агонии (см. "Общее учение о болезни" и раздел XIX - "Патологическая физиология системного кровообращения).

    Задача медицинской науки состоит в том, чтобы путем повышения устойчивости организма к экстремальным факторам сохранить работоспособность человека в экстремальных условиях. Если же экстремальное состояние уже развилось, то задача заключается в выведении организма из этого состояния и восстановлении его жизнедеятельности. Решение этих проблем зависит от знаний патогенеза экстремальных состоянии, а именно соотношения общего и местного, специфического и неспецифического, защитно-приспособительного и собственно патологического, характера причинно-следственных отношений. Важно при этом выделить первичное звено в механизме повреждающего действия болезнетворного фактора.

    Этиологический фактор, как известно, определяет специфические компоненты патогенеза. При экстремальных состояниях только на начальных этапах развития могут сохраняться специфические черты патологического процесса. После воздействия патогенного фактора вторичные изменения нарастают быстро, лавинообразно, представляя ;обой по характеру причинно-следственных отношений цепные разветвленные реакции. В итоге формируется неспецифическая картина тяжелого повреждения организма - шок, коллапс, кома. Анализ этиологии экстремальных состояний усложняется в случае комбинированного воздействия патогенных факторов.

    Общие для всех, неспецифические черты патогенеза экстремальных состояний - это общие механизмы полома и экстренной адаптации. Важно при этом иметь в виду, что приспособительные реакции при их чрезмерной силе и длительности могут перейти в свою противоположность и стать патологическими.

    Что касается общего и местного, то при действии экстремальных факторов внешней среды значение общих изменений в организме значительно превосходит значение местных.

    Лечение и профилактика экстремальных состояний строятся на основании глубоких знаний патофизиологических аспектов взаимодействия организма с патогенными факторами внешней среды.

    Действие экстремальных факторов космического полета

    На динамическом участке полета, т. е. на старте и при приземлении космического корабля, человек подвергается действию перегрузок, вибрации, шума, высокой температуры. В орбитальном полете необычным состоянием являются невесомость и гипокинезия. В аварийной ситуации возможна разгерметизация корабля (декомпрессия), нарушение обеспечения кислородом, облучение. Увеличение длительности полетов, необходимость выхода за пределы корабля для работы вне его и многие другие задачи космических исследований связаны с различными вредностями.

    Перегрузка - сила, действующая на организм во время движения с ускорением. Ведущим в механизме действия перегрузок является смещение органов и жидких сред в направлении, обратном движению. В космических полетах тело космонавта ориентировано по отношению к движению таким образом, чтобы действие перегрузок не совпадало с продольной осью тела, а было бы направлено поперечно. Поперечные перегрузки легче переносятся, чем продольные. Патологические изменений касаются главным образом легких и заключаются в нарушении внешнего дыхания, легочного кровообращения и газообмена.

    Не менее важным является смещение внутренних органов, раздражение интерорецепторов и чрезмерная афферентная импульсация. Степень описанных изменений зависит от величины перегрузки, времени действия, тренированности космонавта.

    Что касается невесомости, то в настоящее время накоплен достаточный опыт длительных космических полетов, доказавший возможность надежного приспособления человека к этому состоянию.

    Адаптация к невесомости заключается в активной перестройке ряда систем на новый уровень функционирования. Значительные изменения отмечаются в системе кровообращения. В результате выпадения гидростатического компонента артериального давления происходит перераспределение крови с увеличением кровенаполнения сосудов верхней половины туловища. Раздражение волюморецепторов, торможение выделения вазопрессина и альдостерона приводит к перестройке водно-электролитного обмена (усиленному выделению натрия и воды через почки). Объем циркулирующей крови уменьшается, нагрузка на сердце снижается. Такая перестройка кровообращения оценивается как разгрузочная. Ей способствует снижение энергозатрат в организме, так как исключаются мышечные усилия на преодоление силы земного притяжения.

    В невесомости наблюдается усиленное выделение из организма не только натрия, но и калия, хлора, железа. Отрицательный азотистый баланс и потеря воды объясняют снижение массы тела, которое обычно наблюдается у космонавтов".

    Большого внимания заслуживают изменения в опорно-двигательном аппарате. Выводятся кальций и фосфор, изменяется структура костей, возникает остеопороз. Отмечается уменьшение массы скелетной мышечной ткани, снижается сила сокращений, появляются признаки атрофии. Изменения в мышцах и костях большинство исследователей рассматривают как результат гипокинезии, снижения гравитационной нагрузки на опорно-двигательный аппарат, снижения механической компрессии костей. Для профилактики рекомендуют физические упражнения, электростимуляцию мышц и вибромассаж.

    В патогенезе изменений, наблюдаемых в мышечной и костной тканях, имеет значение нарушение нервной трофики. Адекватная афферентация является необходимым звеном трофического рефлекса, а в невесомости опорно-двигательный аппарат находится в состоянии функциональной деафферентации. Возникающие при этом изменения в мышцах являются, по-видимому, не только атрофией от бездействия, но и нейрогенной дистрофией, а профилактические мероприятия имеют целью не только поддержание и имитацию локомоторной функции, но и поддержание афферентного звена трофического рефлекса.

    Оценивая влияние невесомости на организм, следует отметить, что новый уровень функционирования системы кровообращения и опорнодвигательного аппарата, а также энергетического и водно-электролитного обмена для условий невесомости, по-видимому, более адекватен, но для условий земной жизни, к которой космонавту предстоит вернуться, неблагоприятен. При возвращении на Землю отмечается снижение функциональных возможностей систем, противодействующих силе тяжести.

    В условиях полета патогенные факторы обычно действуют не изолированно, а в различной комбинации и последовательности. При этом надо учитывать, что результирующий эффект может быть отличным от ожидаемого. В частности, показано, что при перегрузках изменяется реактивность организма, и на этом фоне - течение других патологических процессов (гипоксии, перегревания, интоксикации, охлаждения). Известно также, что организм, перенесший перегрузки, иначе реагирует на лекарственные препараты, вводимые с лечебной целью (Симеонова Н. К.). Длительное пребывание в состоянии невесомости тоже резко изменяет реактивность организма и создает неблагоприятный фон для действия других патогенных факторов полета.

    1   2   3   4   5   6   7   8   9   ...   46


    написать администратору сайта