управление судном книга. На якоре 203 Штормовые диаграммы 184186 Штормовые условия в дрейфе
Скачать 3.93 Mb.
|
Рыскание судна. В отличие от бортовой, килевой и вертикальной качек рыскание судна относят к дополнительным видам качки. При оценке влияния рыскания на эксплуатационную скорость судна можно выделить следующие основные факторы, действие которых может сказаться на его ходовых качествах: увеличение сопротивления корпуса вследствие движения судна с переменным по времени углом дрейфа; увеличение сопротивления из-за перекладок руля; увеличение длины пути, проходимого судном; изменение режима работы гребного винта; повышенный расход топлива и др. Ориентировочные данные о потерях скорости судна в зависимости от среднего угла рыскания и перекладки руля приведены в табл. 11.2. Потеря скорости на удлинении пути вследствие рыскания незначительна. Например, для углов рыскания ±5° она составляет около 0.12—0,20 %. При отклонении курса судна до 30—40° от встречного ветра и волнения дополнительное сопротивление может возрастать, что вызывает не только непосредственным влиянием ветра, волнения моря и качки, но и повышенным рысканием на курсе. Наибольшей скорости судно достигает при равенстве предельной тяги винта полному сопротивлению движения. Предельную полезную тягу винт развивает, когда двигатель работает по заградительной характеристике, ограничивающей мощность и частоту вращения двигателя при перегрузках в эксплуатации. У дизеля это ограничение более жесткое, чем у паровой турбины. Кроме того, пропульсивный коэффициент судна падает с ростом сопротивления из-за снижения эффективности гребного винта, которое зависит от его гидродинамических качеств. ВРШ в этом случае имеют преимущество перед ВФШ. Слеминг. Слеминг (днищевой) возникает в процессе продольной качки при оголении носовой оконечности и последующем соударенйи с волной. Большие динамические нагрузки могут привести к серьезным повреждениям конструкций корпуса и оборудования. Особенности слеминга как физического явления определяются в основном совместным выполнением двух условий: оголением днища и входом его в воду с вертикальной скоростью относительно воды, большей (3- -г4) VT7 wr/c. Вероятность опасных ударов тем больше, чем больше высота волн и скорость судна. Наблюдаются они на встречном волнении в широком Диапазоне курсовых углов. Поэтому отклонение по курсу от чисто встречного движения не всегда является эффективным средством избегать опасности слеминга. Избежать опасные удары волн легче снижением скорости или увеличением осадки судна носом. Заливание палубы и удары волн в развал носа судна. Эти явления вызывают повреждения бака, палубного оборудования, трубопроводов, конструкций люковых закрытий, палубного груза, комингсов грюмов и т. д. Удары волн в развал носа (бортовой слеминг или вигшнг) сами по себе вызывают вибрацию, вмятины в верхней части наружной обшивки носа и в палубе полубака. Многочисленны случаи повреждения груза. Вероятность подмочки груза на практике оказывается примерно вдвое больше вероятности механических повреждений. Для избежания заливания палубы наиболее рационально снизить скорость судна или уменьшить осадку носом. Разгон гребного винта и двигателя. Переменные гидродинамические силы и моменты, действующие на винт при качке, могут привести к поломке лопастей, конструкций гребного валопровода, вызвать вибрацию вала и кормы. Напряжения при оголении винта в гребном валу могут возрасти в 2—3 раза. Разгон винтов более вероятен для судов, на которых вииты имеют малое погружение, большие удельные упоры, большие отношения шага к диаметру и частоты вращения. Разгон винта наименее опасен для турборедукторной пропульсивной установки и наиболее неблагоприятен для дизеля. Для избежания опасности разгона винта может служить увеличение осадки судна кормой или маневрирование скоростью на волнении путем снижения шага BPLL1. Судоводители должны уметь рационально пользоваться этими средствами для обеспечения мореходности своих судов.
Циркуляция. В условиях ветра и волнения циркуляция судна гю своей форме значительно отличается от циркуляции на тихой воде. Характеристиками циркуляции, применяемыми для исследования ее в условиях ветра и волнения, являются угол \f и дистанция циркуляции 5 (рис. II.2). Цифрой / обозначена точка начала перекладки руля, цифрой 2 — точка после поворота судна на 360° в условиях безветрия, цифрой 3 -- подобная точка при циркуляции в условиях ветра и волнения. Угол tf измеряется от линии ветра в сторону, противоположную стороне перекладки руля, до линии, соединяющей точки 2 и 3. Дистанции циркуляции 5 — расстояние между этими точками. Угол зависит в общем случае от целого ряда параметров судна, характеризующих его гидродинамические и аэродинамические особенности. Значения угла if и дистанции S могут быть рассчитаны с помощью ЭВМ, поскольку требуется решение системы дифференциальных уравнений. Наличие в уравнениях большого числа коэффициентов, значения ко- юрых определяются приблизительно, ограничивает возможности расчетных методов циркуляции в условиях ветра п волнения. На рис 11.3 приведены результаты расчета циркуляции в условиях ветра и волнения для теплохода «Борис Бувин» в балласте. Стрелками показано направление ветра. Сравнение расчетных траекторий с широкомасштабными натурными данными показало, что точность paj* работанного на кафедре управления судном ЛВИМУ им. адм. С О. Макарова экспериментально-расчетного метода определения циркуляции в условиях ветра и волнения лежит в пределах 17—19 % при опре- |