|
Контрольные по математике 1 курс спо. 1 семестр-1. Нахождение приближенных значений величин и погрешностей вычислений (абсолютной и относительной)
Практическая работа № 9
Тема: Декартова система координат в пространстве. Уравнение окружности, сферы, плоскости. Расстояние между точками
Продолжительность: 1 час
Материалы для подготовки к практической работе:
Конспект лекции по теме; Материалы учебника М.И. Башмакова Математика Глава 5 Занятие 1; Материалы портала «Российская электронная школа», доступные по ссылкам:
1. Координаты в пространстве. Система координат: https://resh.edu.ru/subject/lesson/5724/main/21896/ Образец работы:
Вариант 1
| Вариант 2
| (2 балла) Задание 1. Найдите расстояние от точки А до точки В.
| А(1; 2; -3); В(0; -1; 1)
| А(3; -2; 1); В(-1; 1; 0)
| (4 балла) Задание 2. Отрезок, концы которого расположены в точках А и В, разделён на 4 равных части. Найдите координаты точек деления.
| А(12;-4;3), В(-16;0;8)
| А(-16;0;4), В(8;-4;2)
| (2 балла) Задание 3. Напишите уравнение одной из плоскостей, проходящей через точку
| Р(-6, 1, -4).
| Q(1, 2, -5).
| (2 балла) Задание 4. Запишите уравнение
| сферы с центром в т.А(2;1;-5) и радиусом 5
| сферы с центром в т.А(2;-5;1) и радиусом 3
|
| Критерии оценивания:
Оценка
| Баллы
| 5
| 9-10
| 4
| 7 – менее 9
| 3
| 5 – менее 7
| 2
| менее 5
|
|
Образец выполнения работы:
Задание 1. Найдите расстояние от точки А до точки В, если А(7; 4; -3); В(2; -2; 0).
Решение:
Дано:А(7; 4; -3); В(2; -2; 0)
Найти: расстояние от А до В
Решение:
Для того, чтобы найти расстояние между точками А и В, воспользуемся формулой:
Ответ: .
| Задание 2. Отрезок, концы которого расположены в точках А и В, разделён на 4 равных части. Найдите координаты точек деления.А(16; 20; -10), В(-4; 10; 0)
Решение:
| Дано: – отрезок
А(16; 20; –10), В(–4; 10; 0)
AD=DC=CE=EB
Найти: координаты С, D, E
| Решение:
C – середина AB. Найдем координаты точки С по формулам:
C(6; 15; –5)
D– середина AC. Найдем координаты точки D по формулам:
D(11; 17,5; –7,5)
E – серединаCB. Найдем координаты точки С по формулам:
E(1; 12,5; –2,5)
Ответ: C(6; 15; –5), D(11;17,5;–7,5), E(1; 12,5; –2,5)
| Задание 3. Запишите уравнение сферы с центром в т. А(4; 0; 2) и радиусом 6.
| Дано: – центр сферы
R=6
Найти: записать уравнение сферы
| Решение:
Уравнение сферы имеет вид: , где – координаты центра сферы.
Тогда:
– искомое уравнение
Ответ:
| |
|
|