Главная страница
Навигация по странице:

  • Происхождение компонентов ЭКГ

  • Тоны сердца, их происхождение. Аускультация и фонокардиография(ФКГ), их диагностическое значение.

  • Первый (систолическое) тон

  • Второй (диастойичний) тон

  • Миогенные механизмы регуляции деятельности сердца. Особенности и механизмы гомеометрической и гетерометрической регуляции. Характеристика внутрисердечной нервной системы.

  • , регулируют силу, ритм сердечных сокращений, скорость предсердно-желудочкового проведения возбуждения, а также скорость диастолического расслабления миокарда

  • фзл. Общая физиология возбудимых тканей


    Скачать 1.43 Mb.
    НазваниеОбщая физиология возбудимых тканей
    Дата22.11.2021
    Размер1.43 Mb.
    Формат файлаdocx
    Имя файлаOTVETY_PO_FZL_2_semestra (1).docx
    ТипЗакон
    #279160
    страница16 из 28
    1   ...   12   13   14   15   16   17   18   19   ...   28

    Вопрос 54.

    Электрокардиография — метод исследования сердечной мышцы путём регистрации биоэлектрических показателей работающего сердца.
    В результате проведения ЭКГ получается электрокардиограмма — графическое представление электрической активности сердца.
    По полученным результатам врач-кардиолог может сделать выводы о работе сердца, патологиях развития, возможных воспалительных процессах.

    1. Что такое электричческий потенциал в ЭКГ ? Тот, кто когда-нибудь наблюдал процесс записи ЭКГ у пациента, невольно задавался вопросом: почему, регистрируя электрические потенциалы сердца, электроды для этих целей накладывают на конечности - на руки и на ноги? Как вы уже знаете, сердце (конкретно - синусовый узел) вырабатывает электрический импульс, который имеет вокруг себя электрическое поле. Это электрическое поле распространяется по нашему телу концентрическими окружностями. Если измерить потенциал в любой точке одной окружности, то измерительный прибор покажет одинаковое значение потенциала. Такие окружности принято называть эквипотенциальными, т.е. с одинаковым электрическим потенциалом в любой точке. Кисти рук и стопы ног как раз и находятся на одной эквипотенциальной окружности, что дает возможность, накладывая на них электроды, регистрировать импульсы сердца, т.е. электрокардиограмму. Регистрировать ЭКГ можно и с поверхности грудной клетки , т.е. с другой эквипотенциальной окружности. Можно записать ЭКГ и непосредственно с поверхности сердца (часто это делают при операциях на открытом сердце), и от различных отделов проводящей системы сердца, например от пучка Гиса (в этом случае записывается гисограмма) и т.д. Иными словами, графически записать кривую линию ЭКГ можно, присоединяя регистрирующие электроды к различным участкам тела. В каждом конкретном случае расположения записывающих электродов мы будем иметь электрокардиограмму, записанную в определенном отведении, т.е. электрические потенциалы сердца как бы отводятся от определенных участков тела. Таким образом, электрокардиографическим отведением называется конкретная система (схема) расположения регистрирующих электродов на теле пациента для записи ЭКГ. 2. Что такое стандартные ЭКГ отведения? Как указывалось выше, каждая точка в электрическом поле имеет свой собственный потенциал. Сопоставляя потенциалы двух точек электрического поля, мы определяем разность потенциалов между этими точками и можем записать эту разность. Записывая разность потенциалов между двумя точками - правая рука и левая рука, один из основоположников электрокардиографии Эйнтховен (Einthoven, 1903) предложил такую позицию двух регистрирующих электродов назвать первой стандартной позицией электродов (или первым отведением), обозначая ее римской цифрой I. Разность потенциалов, определенная между правой рукой и левой ногой, получила название второй стандартной позиции регистрирующих электродов (или второго отведения) обозначаемой римской цифрой П. При позиции регистрирующих электродов на левой руке и левой ноге ЭКГ записывается в третьем (III) стандартном отведении. Если мысленно соединить между собою места наложения регистрирующих электродов, на конечностях, мы получим треугольник, названный в честь Эйнтховена. Как вы убедились, для записи ЭКГ в стандартных отведениях используют три регистрирующих электрода, накладываемых на конечности. Чтобы не перепутать их при наложении на руки и ноги, электроды окрашивают разным цветом. Электрод красного цвета прикрепляется к правой руке, электрод желтого цвета - к левой; зеленый электрод фиксируется на левой ноге. Четвертый электрод, черный, выполняет роль заземления пациента и накладывается на правую ногу. Обратите внимание: при записи электрокардиограммы в стандартных отведениях регистрируется разность потенциалов между двумя точками электрического поля. Поэтому стандартные отведения называют еще и двухполюсными, в отличие от однопо 3. Что такое однополюсные ЭКГ отведения? При однополюсном отведении регистрирующий электрод определяет разность потенциалов между конкретной точкой электрического поля (к которой он подведен) и гипотетическим электрическим нулем. Регистрирующий электрод в однополюсном отведении обозначается латинской буквой V. Устанавливая регистрирующий однополюсный электрод (V) в позицию на правую (Right) руку - записывают электрокардиограмму в отведении VR. При позиции регистрирующего униполярного электрода на левой (Left) руке ЭКГ записывается в отведении VL. Зарегистрированную электрокардиограмму при позиции электрода на левой ноге (Foot) обозначают как отведение VF. Однополюсные отведения от конечностей отображаются графически на ЭКГ маленькими по высоте зубцами вследствие небольшой разности потенциалов. Поэтому для удобства расшифровки их приходится усиливать. Слово "усиленный" пишется как "augmented" (англ.), первая буква - "а". Добавляя ее к названию каждого из рассмотренных однополюсных отведений, получаем их полное название - усиленные однополюсные отведения от конечностей aVR, aVL и aVF. В их названии каждая буква имеет смысловое значение: "а" - усиленный (от augmented; "V" - однополюсный регистрирующий электрод; "R" - месторасположение электрода на правой (Right) руке; "L" - месторасположение электрода на левой (Left) руке; "F" - месторасположение электрода на ноге ( F o o t ) .

    Что такое грудные отведения? Ломимо стандартных и однополюсных отведений от конечностей, в электрокардиографической практике применяются еще и грудные отведения. При записи ЭКГ вгрудных отведений регистрирующий однополюсный электрод прикрепляется непосредственно к грудной клетке. Электрическое поле сердца здесь наиболее сильное, поэтому нет необходимости усиливать грудные униполярные отведения, но не это главное. Главное в том, что грудные отведения, как отмечалось выше, регистрируют электрические потенциалы с другой эквипотенциальной окружности электрического поля сердца. Так, для записи электрокардиограммы в стандартных и однополюсных отведениях потенциалы регистрировались с эквипотенциальной окружности электрического поля сердца, расположенной во фронтальной плоскости (электроды накладывались на руки и на ноги). При записи ЭКГ в грудных отведениях электрические потенциалы регистрируются с окружности электрического поля сердца, которая располагается в горизонтальной плоскости.

    Места прикрепления регистрирующего электрода на поверхности грудной клетки строго оговорены: так при позиции регистрирующего электрода в 4 межреберье у правого края грудины ЭКГ записывается в первом грудном отведении, обозначаемом как V1. Ниже приводится схема расположения электрода и получаемые при этом электрокардиографические отведения: Отведения Местоположение регистрирующего электрода V1 в 4-м межреберье у правого края грудины V2 в 4-м межреберье у левого края грудины V3 на середине расстояния между V1 и V4 V4 в 5-м межреберье на срединно-ключичной линии V5 на пересечении горизонтального уровня 5-го межреберья и передней подмышечной линии V6 на пересечении горизонтального уровня 5-го межреберья и средней подмышечной линии V7 на пересечении горизонтального уровня 5-го межреберья и задней подмышечной линии V8 на пересечении горизонтального уровня 5-го межреберья и срединно-лопаточной линии V9 на пересечении горизонтального уровня 5-го межреберья и паравертебральной линии Отведения V7, V8, и V9 не нашли своего широкого применения в клинической практике и почти не используются.



    Происхождение компонентов ЭКГ.

    - зубец Р – возбуждение предсердий ( 0,05 – 0,25 млв, 0,06 – 0,10 с.)

    - сегмент Р – Q – предсердия возбуждены, разность потенциалов отсутствует; в это время проводится возбуждение через предсердно-желудочковыйузел, по пучку Гиса и волокнам Пуркинье ( 0,06 – 0,10с.), которое не сопровождается возникновением зубцов из-за малой массы проводящей системы.

    -желудочковый комплекс Q R S T (интервал Q - T) отражает процесс деполяризации и реполяризации желудочков, называемый их электрической систолой. Он включает в себя:

    - зубец Q – возбуждение межжелудочковой перегородки и верхушки сердца (до ¼ зубца R, до 0,03 с., всегда отрицательный)

    - зубец R – возбуждение основной массы мускулатуры желудочков, кроме основания и субэпикардиального слоя (0,3 – 2мв, до 0,03 с. всегда положительный)

    - зубец S – отражает состояние, когда возбуждены все отделы желудочков, кроме их основания (у предсердно-желудочковой перегородки; 0 – 0,06мв, до 0,03 с., всегда отрицательный)

    - сегмент S - T – возбуждены все отделы желудочков, отсутствует разность потенциалов (0,02 – 0,12 с)

    - интервал S - T – состоит из сегмента S - T т зубца T

    - зубец T – процесс реполяризации желудочков, начинающийся с верхушки сердца и субэпикардиального слоя, миоциты которого имеют более короткую фазу «плато» и рефрактерность( 0,2 – 0,6мв, 0,1 – 0,25 с.)

    - непостоянный зубец U следует за зубцом T и отражает процесс реполяризации сосочковых мышц и волокнПуркинье

    - интервал R- R – расстояние от вершин зубцов R двух соседних сердечных циклов.
    Электрокардиография занимает одно из ведущих мест среди дополнительных методов исследования сердечно-сосудистой системы. ЭКГ оказывает большую помощь в выявлении нарушений сердечного ритма, в диагностике нарушений коронарного кровообращения. При всей ценности метода ЭКГ необходимо подчеркнуть, что оценивать ЭКГ следует только с учетом клинических данных, поскольку различные патологические процессы могут приводить к сходным ее изменениям. Игнорирование клинических данных и переоценка метода ЭКГ могут привести к серьезным диагностическим ошибкам.


    1. Тоны сердца, их происхождение. Аускультация и

    фонокардиография(ФКГ), их диагностическое значение.

    Если над проекцией клапанных створок или в ближайшей к аорты и легочной артерии области к груди приложить стетоскоп или микрофон фонокардиографа, то можно услышать звуки, которые сопровождают каждое сокращение сердца. Ухом можно различить 2 звуки (тона). Чувствительный прибор позволяет зафиксировать появление 4 тонов.
    Первый (систолическое) тон совпадает по времени с началом систолы желудочков. В его формировании участвуют С компоненты - клапанный, мышечный и сосудистый. Клапанный компонент обусловлен закрытием створок предсердно-желудочковых клапанов, вибрацией этих створок и сухожильных нитей, которые содержат эти створки, турбулентным движением крови, вибрацией стенки
    желудочков в фазу изометрического сокращения, а также колебанием начальных отделов аорты и легочного ствола в фазу быстрого выброса крови.
    Основным компонентом названного тона является клапанный. Он главным образом влияет на силу систолического тона. Так, при повышении интенсивности сокращения желудочков в связи с быстрым нарастанием давления тон становится громче. Это же наблюдается и в том случае, когда створки клапанов раскрыты шире при увеличении кровенаполнения желудочков. Продолжительность систолического тона составляет около 0,14 с.
    Второй (диастойичний) тон обусловлен ударом створок полумесячной клапанов друг о друга при их закрытии в начале диастолы, их вибрации, турбулентным движением крови, которая бьется об закрытые створки клапанов, вибрацией крупных артерий (аорты и легочного ствола). Его продолжительность - от 0,08 до 0,11 с.
    Третий тон возникает вследствие вибрации стенок желудочков в фазу быстрого заполнения их кровью, четвертый - при си-. столе предсердий и возврате части крови в предсердие, когда в начале систолы желудочков атриовентрикулярные клапаны еще открыты.
    Тоны сердца хорошо слышен над клапанами: первый - над атриовентрикулярными, второй - над полумесячным. Звук лучше проводится с током крови, и поэтому отдельно клапаны лучше выслушивать за ходом соответствующей сосуда (аорты или легочной артерии).
    При пороках клапанов, нарушении состояния сократительного миокарда тона меняются: повышается или снижается интенсивность звучания их, появляются шумы. Регистрация дефекта тона над проекцией определенного клапана помогает установить природу нарушения.

    Фонокардиография (греч. phōnē звук + kardia сердце + graphō писать, изображать) - метод исследования и диагностики нарушений деятельности сердца и его клапанного аппарата, основанный на регистрации и анализе звуков, возникающих при сокращении и расслаблении сердца. Ф. объективизирует данные аускультации сердца, уточняет их результатами амплитудного и частотного анализа звуков, измерения их длительности и интервалов между ними. Синхронная с Ф. регистрация электрокардио- и сфигмограммы используется для анализа фазовой структуры сердечного цикла.

    При работе сердца возникают звуки, которые называют тонами сердца. При выслушивании (аускультации) тонов сердца на поверх­ности левой половины грудной клетки слышны два тона: I тон (систолический), II тон — в начале диастолы (диастолический). Тон I более протяжный и низкий, II — короткий и высокий.

    Детальный анализ тонов сердца стал возможным благодаря при­менению электронной аппаратуры. Если к груди обследуемого при­ложить чувствительный микрофон, соединенный с усилителем и осциллографом, можно зарегистрировать тоны сердца в виде кри­вых — фонокардиограммы (ФКГ). Эта методика называется фонокардиографией.

    Сужение клапанных отверстий или неплотное смыкание створок и лепестков клапанов вызывает появление сердечных шумов, воз­никающих вследствие вихреобразного (турбулентного) движения крови через отверстия клапанов. Эти шумы имеют важное диагно­стическое значение при поражениях клапанов сердца.

    На ФКГ, помимо I и II тонов, регистрируются III и IV тоны сердца (более тихие, чем I и II, поэтому неслышные при обычной аускультации).

    Тон III возникает вследствие вибрации стенки желудочков при быстром притоке крови в желудочки в начале их напол­нения.

    Тон IV имеет два компонента. Первый из них возникает при сокращении миокарда предсердий, а второй появляется в самом начале расслабления предсердий и падения давления в них.

    Регистрацию фонокардиограммы производят в специально оборудованной изолированной комнате, где можно создать полную тишину. Обычно ФКГ регистрируют после 5-минутного отдыха обследуемого в горизонтальном положении. Предварительная аускультация и клинические данные определяют выбор основных и дополнительных точек записи, а также использование специальных приемов запись в положении на боку, сидя, стоя, после физической нагрузки. В диагностических и исследовательских целях возможно, кроме того, проведение специальных проб с применением ряда фармакологических средств.

    ФКГ записывают обычно на выдохе, а при необходимости на высоте вдоха и при свободном дыхании. Для получения качественной ФКГ большое значение имеет фиксация микрофона рукой исследователя или специальным ремнем. Микрофон должен плотно, но не сильно, прилегать к поверхности грудной клетки. Увеличение силы, с которой прижимают микрофон, снижает амплитуду записываемых звуков


    1. Миогенные механизмы регуляции деятельности сердца.

    Особенности и механизмы гомеометрической и гетерометрической регуляции. Характеристика внутрисердечной нервной системы.

    Изучение зависимости силы сокращений сердца от растяжения его камер показало, что сила каждого сердечного сокращения зависит от величины венозного притока и определяется конечной диастолической длиной волокон миокарда. Эта зависимость получила название гетерометрическая регуляция сердца и известна как закон Франка—Старлинга: «Сила сокращения желудочков сердца, измеренная любым способом, является функцией длины мышечных волокон перед сокращением», т. е. чем больше наполнение камер сердца кровью, тем больше сердечный выброс. Установлена ультраструктурная основа этого закона, заключающаяся в том, что количество актомиозиновых мостиков является максимальным при растяжении каждого саркомера до 2,2 мкм.

    Увеличение силы сокращения при растяжении волокон миокарда не сопровождается увеличением длительности сокращения, поэтому указанный эффект одновременно означает увеличение скорости нарастания давления в камерах сердца во время систолы. Инотропные влияния на сердце, обусловленные эффектом Франка— Старлинга, играют ведущую роль в увеличении сердечной деятельности при усиленной мышечной работе, когда сокращающиеся скелетные мышцы вызывают периодическое сжатие вен конечностей, что приводит к увеличению венозного притока за счет мобилизации резерва депонированной в них крови. Отрицательные инотропные влияния по указанному механизму играют существенную роль в изменениях кровообращения при переходе в вертикальное положение (ортостатическая проба). Эти механизмы имеют большое значение для согласования изменений сердечного выброса и притока крови по венам малого круга, что предотвращает опасность развития отека легких.

    Термином «гомеометрическая регуляция» обозначают миогенные механизмы, для реализации которых не имеет значения степень конечно-диастолического растяжения волокон миокарда. Среди них наиболее важным является зависимость силы сокращения сердца от давления в аорте (эффект Анрепа) и хроно-инотропная зависимость. Этот эффект состоит в том, что при увеличении давления «на выходе» из сердца сила и скорость сердечных сокращений возрастают, что позволяет сердцу преодолевать возросшее сопротивление в аорте и поддерживать оптимальным сердечный выброс.

    Внутриклеточные механизмы регуляции обеспечивают и изме­нение интенсивности деятельности миокарда в соответствии с ко­личеством притекающей к сердцу крови. Этот механизм получил название «закон сердца» (закон Франка—Старлинга): сила сокра­щения сердца (миокарда) пропорциональна степени его кровена­полнения в диастолу (степени растяжения), т. е. исходной длине его мышечных волокон. Более сильное растяжение миокарда в мо­мент диастолы соответствует усиленному притоку крови к сердцу. При этом внутри каждой миофибриллы актиновые нити в большей степени выдвигаются из промежутков между миозиновыми иитями, а значит, растет количество резервных мостиков, т. е. тех актиновых точек, которые соединяют актиновые и миозиновые нити в момент сокращения. Следовательно, чем больше растянута каждая клетка миокарда во время диастолы, тем больше она сможет укоротиться во время систолы. По этой причине сердце перекачивает в артери­альную систему то количество крови, которое притекает к нему из вен. Такой тип миогенной регуляции сократимости миокарда полу­чил название гетерометрической (т. е. зависимой от переменной величины — исходной длины волокон миокарда) регуляции. Под гомеометрической регуляцией принято понимать изменения силы сокращений при неменяющейся исходной длине волокон миокарда. Это прежде всего ритмозависимые изменения силы сокращений. Если стимулировать полоску миокарда при равном растяжении с все увеличивающейся частотой, то можно наблюдать увеличение силы каждого последующего сокращения («лестница» Боудича). В ка­честве теста на гомеометрическую регуляцию используют также пробу Анрепа — резкое увеличение сопротивления выбросу крови из левого желудочка в аорту. Это приводит к увеличению в опре­деленных границах силы сокращений миокарда. При проведении пробы выделяют две фазы. Вначале при увеличении сопротивления выбросу крови растет конечный диастолический объем и увеличение силы сокращений реализуется по гетерометрическому механизму. На втором этапе конечный диастолический объем стабилизируется и возрастание силы сокращений определяется гомеометрическим механизмом.

    Гетерометрический и гомеометрический механизмы регуляции силы сокращения миокарда могут привести лишь к резкому уве­личению энергии сердечного сокращения в случае внезапного по­вышения притока крови из вен или повышения артериального давления. Казалось бы, что при этом артериальная система не защищена от губительных для нее внезапных мощных ударов крови. В действительности же таких ударов не возникает благодаря защитной роли, осуществляемой рефлексами внутрисердечной нер­вной системы.

    Основой для второго уровня регуляции работы сердца является внутрисердечная автономнаянервная система. Если произвести полную денервацию или пересадку сердца теплокровного животного, то реакция такого сердца на различные нагрузки почти ничем не отличается от реакций у интактного животного. Денервированное сердце целиком обеспечивает потребности организма. Это доказывает существование в сердце собственной автономной регуляции, осуществляемой метасимпатической нервной системой, нейроны которой располагаются во внутрисердечных нервных ганглиях.

    Вместе с тем, метасимпатическая нервная система сердца - это не просто внутрисердечное парасимпатическое сплетение, где происходит переключение преганглионарных волокон на ганглионарные нейроны. Это относительно независимая самостоятельная внутрисердечная интегративная нервная система. Она имеет собственные сенсорные, вставочные и двигательные нейроны, а также свои медиаторы. Аксоны чувствительных клеток метасимпатической нервной системы проходят в составе афферентной порции блуждающего нерва и проводят импульсы в высшие отделы центральной нервной системы. В свою очередь со вставочными и двигательными метасимпатическими нейронами контактируют преганглионарные волокна блуждающего нерва и постганглионарные волокна сердечных симпатических ветвей, т.е. метасимпатические сердечные нейроны являются общим конечным путём и для внутрисердечных и для центральных импульсов.

    Местные сердечные рефлексы, осуществляемые метасимпатической нервной системой, регулируют силу, ритм сердечных сокращений, скорость предсердно-желудочкового проведения возбуждения, а также скорость диастолического расслабления миокарда в зависимости от наполнения камер сердца, давления крови в аорте и коронарных сосудах. Таким образом, внутрисердечная нервная регуляция изменяет уровень сердечной деятельности в соответствии с общими гемодинамическими потребностями и подчиняет свою деятельность центральной нервной регуляции.


    1. 1   ...   12   13   14   15   16   17   18   19   ...   28


    написать администратору сайта