Главная страница

Общая химическая технология


Скачать 1.75 Mb.
НазваниеОбщая химическая технология
Дата02.03.2023
Размер1.75 Mb.
Формат файлаdocx
Имя файлаChemical engineering (1).docx
ТипУчебное пособие
#964211
страница13 из 32
1   ...   9   10   11   12   13   14   15   16   ...   32

Глава 4
ОБЩИЕ СВЕДЕНИЯ
О ХИМИЧЕСКИХ РЕАКТОРАХ


Центральным аппаратом в любой химико-технологической системе, включающей целый ряд машин и аппаратов, соединенных между собой различными связями, является химический реактор – аппарат, в котором протекает химический процесс. Выбор типа, конструкции и расчет химического реактора, создание системы управления его работой – одна из важных задач химической технологии.

Как и в случае других аппаратов, используемых в химической промышленности (теплообменных, массообменных и др.), для изучения, расчета и проектирования химических реакторов применяется метод моделирования.

§ 4.1. Моделирование химических реакторов
и протекающих в них химических процессов


Моделирование – это метод изучения различных объектов, при котором исследования проводят на модели, а результаты количественно распространяют на оригинал. Модель может представлять собой уменьшенную по определенным законам (или иногда увеличенную) копию реального объекта. Но моделью может быть и определенная система представлений о реальном объекте, выражаемая как совокупность математических структур: уравнений, неравенств, таблиц, графиков. Такую модель обычно называют математическим описанием объекта, или его математической моделью.

Математическая модель – некоторое упрощенное изображение процесса в реакторе, которое сохраняет наиболее существенные свойства реального объекта и передает их в математической форме. В зависимости от поставленной задачи математическая модель учитывает разное число признаков объекта и поэтому может быть широкой или узкой.

Разработка моделей, в частности моделей реакторов и протекающих в них химических процессов, – задача непростая, так как требования к математической модели часто бывают противоречивыми.

Во-первых, модель должна быть проще реального объекта, наглядно и отчетливо передавать все качественные стороны интересующего нас явления. Только в этом случае можно сохранить «физический контроль» над моделью. Если модель будет сложнее объекта, то моделирование теряет смысл, так как в этом случае для изучения явления легче было бы исследовать сам объект, а не модель. Чем сложнее математическая модель, тем меньше вероятность получения аналитических решений на ее основе, следовательно, тем больше вероятность появления больших ошибок при расчетах на ее основе.

Однако излишнее упрощение модели рискованно из-за вероятности потерять какие-либо существенные стороны изучаемого явления. Исходя из этих соображений, формулируется второе требование: модель должна быть достаточно полной и подробной, точно передавать не только качественные, но и количественные закономерности явления. Если не выполнить этого требования, затруднительно будет использовать разработанную модель для расчета химических реакторов в широких диапазонах изменения условий их работы.

Противоречивость этих требований очевидна: без обстоятельного изучения свойств системы не всегда ясно, какие факторы наиболее существенны, а какими можно пренебречь. При упрощении модели можно не учесть важные элементы изучения явления и этим сделать модель непригодной для расчета реального аппарата, и в то же время полная модель может быть столь сложной в математическом отношении, что достаточно точный расчет на ее основе также станет невозможным. Следовательно, разработка математической модели реактора всегда связана с поиском компромисса между указанными требованиями.

Облегчить эту сложную задачу помогают некоторые общие принципы, в частности использование системного подхода к химическим реакторам и химическим процессам. Химический реактор рассматривают как сложную систему, т. е. множество элементов, находящихся в определенных отношениях друг с другом и образующих целостность, единство. В рамках системного подхода удобно использовать иерархический принцип. Его суть состоит в том, что сложная система рассматривается как совокупность подсистем, связанных между собой. Подсистемы, находящиеся на более высокой ступени иерархии, выполняют все функции подсистемы, принадлежащей более низкой ступени иерархии.

Реактор и реакционный узел, будучи сложными объектами, имеют многоступенчатую структуру, и их математические модели строятся последовательно на основе предварительного построения моделей их составных частей и введения соотношений, связывающих переход с одного уровня на другой. Исследование сложного процесса по частям дает возможность переходить к модели более высокого уровня, включая в нее как составную часть узкую модель более низкого уровня. Первоначально проведенный анализ моделей более низкого уровня существенно упрощает анализ процесса в целом, и в то же время в рамках иерархического подхода легче учесть взаимосвязь между различными уровнями системы.

Конечно, разбиение на иерархические уровни может быть многовариантным. Рассмотрим один из возможных вариантов иерархической структуры химического процесса, протекающего в реакторе (в порядке возрастания ступеней иерархии).

В качестве нижнего уровня иерархии чаще всего рассматривают молекулярный уровень – межмолекулярное взаимодействие на расстояниях, примерно равных размерам молекул, определяемое закономерностями химической кинетики, стехиометрическими соотношениями, устанавливающими количественную взаимосвязь между расходованием различных реагентов и образованием продуктов реакции, а также законы химического равновесия.

Следующим является уровень малого объема – некоторый элемент реакционного объема макроскопического размера, например сфера или цилиндр с поперечным сечением в несколько квадратных миллиметров или сантиметров. Таким элементом может быть одно зерно катализатора, пузырек газа, поднимающийся в барботажном слое, один элемент насадки в насадочной колонне и т. д. Закономерности предыдущего уровня должны быть теперь дополнены закономерностями тепло- и массопереноса.

Уровень рабочей зоны аппарата – статистическая совокупность изученных на предыдущем уровне элементов малого объема, например слой катализатора, насадочный слой, барботажный слой и т. д. На этом уровне необходимо учитывать эффекты, связанные с характером движения потока. В ряде случаев (например, при рассмотрении гомогенных реакций) на этот уровень можно перейти с первого, минуя уровень малого объема.

Уровень аппарата – конфигурация, взаимная связь и взаимное расположение рабочих зон аппарата, например, несколько слоев катализатора, разделенных теплообменниками, в многослойном каталитическом реакторе или несколько барботажных тарелок в колонном аппарате для проведения газожидкостных реакций.

Использование иерархического подхода существенно упрощает задачи анализа и синтеза математических моделей химических реакторов.
1   ...   9   10   11   12   13   14   15   16   ...   32


написать администратору сайта