Понятия возбудимости и раздражимости. Раздражители определение, их виды, характеристика. Мембранный потенциал покоя параметры, механизм формирования. Понятия возбудимости и раздражимости Возбудимость
Скачать 2.86 Mb.
|
Наполнение сердца кровью. Причины наполнения сердца кровью следующие: остаток движущей силы, которая была сообщена крови предыдущим сокращением сердца, присасывающее действие грудной клетки во время вдоха, присасывающее действие самого сердца во время диастолы, наличие клапанов в венах, сокращение скелетной мускулатуры. | ||||
| Физиологические свойства сердечной мышцы. Автоматия сердца: определение, доказательство существования, проводящая система и ее функции, механизм автоматии, градиент автоматии и его доказательство. Физиологические свойства сердечной мышцы Основные физиологические свойства сердечной мышцы. Как всякая мышца, сердечная обладает возбудимостью, сократимостью и проводимостью. Кроме того, сердце обладает еще и способностью к автоматии. При действии раздражителя на миокард возникает его возбуждение и сокращение. При этом на пороговую силу сердце отвечает максимальным сокращением (закон "все или ничего" Боудича). Однако, сердце не при всех условиях отвечает на раздражение одинаково. Величина "все" может меняться в зависимости от температуры, растяжения мышцы, степени ее утомления, состава протекающей крови и т.п. В состоянии покоя поверхностная мембрана мышечной клетки поляризована, и мембранный потенциал равен 80-90 мВ. При возбуждении вследствие перехода катионов Na и Са через мембрану внутрь волокна возникает ПД, равный 100-120 мВ. После быстрой деполяризации наступает несравнимо более медленная реполяризация. Сначала разность потенциалов быстро падает, потом некоторое время удерживается на одном уровне (плато), после чего происходит относительно быстрое восстановление мембранного потенциала до исходной величины. Описанные изменения электрического состояния мембраны характерны для мышечных волокон желудочков сердца. В других мышечных волокнах сердца форма ПД может быть несколько другой. Наибольшие различия отмечаются в пейсмекерах (водителях ритма), в которых происходит спонтанная медленная деполяризация во время диастолы, а пик и плато в достаточной мере сглажены, хотя и продолжаются то же время. ПД в миокарде длится дольше, чем в волокнах скелетной мускулатуры. Общая его продолжительность равна 0,3 сек при ритме работы 70 в мин. Длительность ПД укорачивается при учащении и удлиняется при замедлении работы сердца. Во время возбуждения сердечная мышца, так же, как и скелетная, утрачивает способность отвечать второй вспышкой возбуждения на искусственное раздражение или на приходящий к ней импульс от очага автоматии. Длительность периода абсолютной рефрактерности в сердце велика и равна 0,27 сек при ритме 70 в мин. Период рефрактерности сердечной мышцы продолжается столько же времени, сколько длится ее сокращение в ответ на одиночное раздражение. Поэтому сердце не способно сокращаться тетанически. По окончании абсолютного рефрактерного периода возбудимость постепенно восстанавливается до исходного уровня. Это - период относительной рефрактерности, который длится 0,03 сек. За ним наступает короткий период супернормальной возбудимости. Автоматия сердца: определение, доказательство существования, проводящая система и ее функции, механизм автоматии, градиент автоматии и его доказательство Автоматия – способность сокращаться под действием собственных импульсов. Автоматию легко наблюдать на выделенном сердце лягушки, помещенном в раствор Рингера, в нем сердце может совершать циклы сокращение-расслабление в течение десятков минут. Ритмические импульсы генерируются специальными клетками пейсмекера и рас-пространяются по проводящей системе. В норме водителем ритма служит синоатриальный узел (СА), расположенный в стенке правого предсердия в месте впадения в него верхней полой вены (рис. 20). Частота электрических разрядов СА в покое составляет около 70 в мин. От СА возбуждение вначале распространяется к рабочему миокарду предсердий. Атриовентрикулярная перегородка является электрически невозбудимым образованием, поэтому к желудочкам возбуждение может пройти только единственным путем ¬– по проводящей системе. Из СА возбуждение передается в атриовентрикулярный узел (АВ). После него переходит в пучок Гиса и его левую и правую ножки, заканчиваясь в конечных разветвлениях – волокнах Пуркинье. По проводящей системе возбуждение распространяется со скоростью до 4 м/с. Для сравнения – по рабочему миокарду возбуждение движется со скоростью всего около 0,5 м/с. От ведущего узла по предсердиям возбуждение проводится по специальным пучкам, образованным атипическими мышечными волокнами. Кисом и Флеком описан также пучок атипических волокон, соединяющий синусный узел с атриовентрикулярным узлом (Ашоф-Товара), распо-ложенным в правом предсердии, в области межпредсердной перегородки, вблизи от соединитель-но-тканного кольца, отделяющего предсердие от желудочка. От атриовентрикулярного узла берет начало пучок Гисса, который, войдя в желудочек по межжелудочковой перегородке, делится на две ветви - правую и левую ножки пучка Гисса. Конечные разветвления проводящей системы представлены широко распространенной, расположенной под эндокардом сетью волокон Пурки-нье, которые через т.н. транзиторные клетки соединяются с мышечными волокнами сердца (со-кратительным миокардом). Автоматия разных отделов сердца неодинакова. Особенностью проводящей системы серд-ца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии раз-личных участков проводящей системы по мере их удаления от синусно-предсердного узла, гене-рирующего импульса с частотой до 60—80 в минуту (закон градиента автоматии Гаскелла). Градиент автоматии – уменьшение способности к автоматии у клеток проводящей системы сердца по мере удаления от синоатриального узла. У человека: синоатриальный узел (САУ) генерирует ПД с частотой 60-80 в минуту, атриовентрикулярный узел (АВУ) – с частотой 40-50 в мин, клетки системы Гиса – 30-40 в мин, волокна Пуркинье – 10-20 в мин. Доказывается - лигатурами Станниуса или наблюдением за сокращением кусочков мышцы из разных отделов сердца. В нормальных физиологических условиях функционирует лишь один очаг автоматии - синоатриальный узел. Водители ритма, находящиеся в других отделах сердца, не генерируют импульсов. Их автоматия подавлена более частым ритмом синоатриального узла (способность к усвоению более частого ритма). После наложения лигатуры на предсердия насту-пает преавтоматическая пауза, после которой начинает проявляться автоматия атриовентрикуляр-ного узла. Ритмическое сокращение можно наблюдать и на трипсинизированном сердце (в культуре ткани). Отдельные мышечные клетки сокращаются и генерируют импульсы. При этом со време-нем клетки собираются в комочки и начинают сокращаться в ритме самого частого темпа, свойст-венного данным клеткам. | |||
| Физиологические свойства сердечной мышцы. Потенциал действия типических кардиомиоцитов и атипических миоцитов. Особенности возбуждения, проведения и сокращения по сравнению со скелетной мышцей. Физиологические свойства сердечной мышцы Основные физиологические свойства сердечной мышцы. Как всякая мышца, сердечная обладает возбудимостью, сократимостью и проводимостью. Кроме того, сердце обладает еще и способностью к автоматии. При действии раздражителя на миокард возникает его возбуждение и сокращение. При этом на пороговую силу сердце отвечает максимальным сокращением (закон "все или ничего" Боудича). Однако, сердце не при всех условиях отвечает на раздражение одинаково. Величина "все" может меняться в зависимости от температуры, растяжения мышцы, степени ее утомления, состава протекающей крови и т.п. В состоянии покоя поверхностная мембрана мышечной клетки поляризована, и мембранный потенциал равен 80-90 мВ. При возбуждении вследствие перехода катионов Na и Са через мембрану внутрь волокна возникает ПД, равный 100-120 мВ. После быстрой деполяризации наступает несравнимо более медленная реполяризация. Сначала разность потенциалов быстро падает, потом некоторое время удерживается на одном уровне (плато), после чего происходит относительно быстрое восстановление мембранного потенциала до исходной величины. Описанные изменения электрического состояния мембраны характерны для мышечных волокон желудочков сердца. В других мышечных волокнах сердца форма ПД может быть несколько другой. Наибольшие различия отмечаются в пейсмекерах (водителях ритма), в которых происходит спонтанная медленная деполяризация во время диастолы, а пик и плато в достаточной мере сглажены, хотя и продолжаются то же время. ПД в миокарде длится дольше, чем в волокнах скелетной мускулатуры. Общая его продолжительность равна 0,3 сек при ритме работы 70 в мин. Длительность ПД укорачивается при учащении и удлиняется при замедлении работы сердца. Во время возбуждения сердечная мышца, так же, как и скелетная, утрачивает способность отвечать второй вспышкой возбуждения на искусственное раздражение или на приходящий к ней импульс от очага автоматии. Длительность периода абсолютной рефрактерности в сердце велика и равна 0,27 сек при ритме 70 в мин. Период рефрактерности сердечной мышцы продолжается столько же времени, сколько длится ее сокращение в ответ на одиночное раздражение. Поэтому сердце не способно сокращаться тетанически. По окончании абсолютного рефрактерного периода возбудимость постепенно восстанавливается до исходного уровня. Это - период относительной рефрактерности, который длится 0,03 сек. За ним наступает короткий период супернормальной возбудимости. Потенциалы действия (ПД), зарегистрированные в разных отделах сердца при помощи внутриклеточных микроэлектродов, существенно различаются по форме, амплитуде и длительности (рис. 22, А). На рис. 22, Б схематически показан ПД одиночной клетки миокарда желудочка. Для возникновения этого потенциала потребовалось деполяризовать мембрану на 30 мВ. В ПД различают следующие фазы: быструю начальную деполяризацию — фаза 1; медленную реполяризацию, так называемое плато — фаза 2; быструю реполяризацию — фаза 3; фазу покоя — фаза 4. Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного потенциала (с —90 до +30 мВ). В клетках рабочего миокарда (предсердия, желудочки) мембранный потенциал (в интервалах между следующими друг за другом ПД) поддерживается на более или менее постоянном уровне. Однако в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяризация (фаза 4), при достижении критического уровня которой (примерно —50 мВ) возникает новый ПД (см. рис. 22, Б). На этом механизме основана авторитмическая активность указанных сердечных клеток. Биологическая активность этих клеток имеет и другие важные особенности: 1) малую крутизну подъема ПД; 2) медленную реполяризацию (фаза 2), плавно переходящую в фазу быстрой реполяризации (фаза 3), во время которой мембранный потенциал достигает уровня —60 мВ (вместо —90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастолической деполяризации. Сходные черты имеет электрическая активность клеток предсердно-желудочкового узла, однако скорость спонтанной диастолической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла, соответственно ритм их потенциальной автоматической активности меньше. Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастолической деполяризации и медленной восходящей фазы ПД клеток синусно-предсердного узла ведущую роль играют кальциевые каналы. Они проницаемы не только для ионов Са2+, но и для ионов Na+. Быстрые натриевые каналы не принимают участия в генерации ПД этих клеток. Способность клеток миокарда в течение жизни человека находиться в состоянии непрерывной ритмической активности обеспечивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na+, а в клетку возвращаются ионы К+. Ионы Са2+, проникшие в цитоплазму, поглощаются эндоплазматической сетью. Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается, вследствие чего уменьшается электрическая и механическая активность миокардиальных клеток. Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца: 1) ритмическую генерацию импульсов (потенциалов действия); 2) необходимую последовательность (координацию) сокращений предсердий и желудочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы). Особенности возбуждения, проведения и сокращения по сравнению со скелетной мышцей По проводящей системе возбуждение распространяется со скоростью до 4 м/с. Для сравнения – по рабочему миокарду возбуждение движется со скоростью всего около 0,5 м/с. Высокая скорость проведения импульса по проводящей системе желудочков обеспечивает их синхронное возбуждение. Это повышает эффективность насосной функции сердца. От ведущего узла по предсердиям возбуждение проводится по специальным пучкам, образованным атипическими мышечными волокнами. Кисом и Флеком описан также пучок атипических волокон, соединяющий синусный узел с атриовентрикулярным узлом (Ашоф-Товара), расположенным в правом предсердии, в области межпредсердной перегородки, вблизи от соединительно-тканного кольца, отделяющего предсердие от желудочка. От атриовентрикулярного узла берет начало пучок Гисса, который, войдя в желудочек по межжелудочковой перегородке, делится на две ветви - правую и левую ножки пучка Гисса. Конечные разветвления проводящей системы представлены широко распространенной, расположенной под эндокардом сетью волокон Пуркинье, которые через т.н. транзиторные клетки соединяются с мышечными волокнами сердца (сократительным миокардом). По разветвлениям проводящей системы возбуждение доходит до всей массы сердечной мышцы, вызывая ее сокращение. Доказать, что синоатриальный узел является местом возникновения возбуждения в сердце (пейсмекером) можно или электрофизиологически, или опытами с ограниченным охлаждением синоатриального узла. Местное охлаждение вызывает замедление или остановку сердца, тогда как действие холода на другие участки сердца неэффективно. По мускулатуре предсердий возбуждение распространяется со скоростью около 1 м/ сек, и доходит до элементов атриовентрикулярного узла. При переходе через последний отмечается задержка возбуждения, так что на пучок Гисса возбуждение передается лишь через 0,04-0,05 сек после того, как оно дошло до атриовентрикулярного узла. В течение этой атриовентрикулярной задержки систола предсердий уже заканчивается. Таким образом, систола желудочков начинается только после окончания систолы предсердий. | |||
| Электрокардиография: определение, основные способы регистрации ЭКГ. Характеристика ЭКГ в стандартном отведении, генез зубов, сегментов и интервалов, их параметры, значение ЭКГ для клиники. Охват возбуждением огромного количества клеток рабочего миокарда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позволяют регистрировать. электрические потенциалы сердца с поверхности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнтховеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электрокардиографии,а регистрируемая с ее помощью кривая называется электрокардиограммой(ЭКГ). Электрокардиография широко применяется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ. В настоящее время пользуются специальными приборами — электрокардиографами с электронными усилителями и осциллографами. Вследствие определенного положения сердца в грудной клетке и своеобразной формы тела человека электрические силовые линии, возникающие между возбужденными (—) и невозбужденными (+) участками сердца, распределяются по поверхности тела неравномерно. По этой причине в зависимости от места приложения электродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три так называемых стандартных отведений от конечностей:I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога (рис. 24). Кроме того, регистрируют три униполярных усиленных отведения по Гольдбергеру: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один, и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу. Вильсоном предложена регистрация шести грудных отведений. . Рис. 24. Слева - наложение электродов при стандартных отведениях электрокардиограммы (I—III) и формы ЭКГ, получаемых при этих отведениях. Справа - места наложения электродов при грудных отведениях электрокардиограммы (1—6) и формы ЭКГ, получаемых при этих отведениях. I—IV — межреберные промежутки Взаимоотношение величины зубцов в трех стандартных отведениях было установлено Эйнтховеном. Он нашел, что электродвижущая сила сердца, регистрируемая во II стандартном отведении, равна сумме электродвижущих сил в I и III отведениях. Выражением электродвижущей силы является высота зубцов, поэтому зубцы II отведения по своей величине равны алгебраической сумме зубцов I и III отведений Для отведения потенциалов от грудной клетки рекомендуют прикладывать первый электрод к одной из шести показанных на рис. 24 точек. Вторым электродом служат три соединенных вместе электрода, наложенных на обе руки и левую ногу. В этом случае форма ЭКГ отражает электрические изменения только на участке приложения грудного электрода. Объединенный электрод, приложенный к трем конечностям, является индифферентным, или «нулевым», так как его потенциал не изменяется на протяжении всего сердечного цикла. Такие электрокардиографические отведения называются униполярными, или однополюсными. Эти отведения обозначаются латинской буквой V (V1, V2 и т. д.). Нормальная ЭКГ человека, полученная во II стандартном отведении, приведена на рис. 25. При анализе ЭКГ определяют амплитуду зубцов в мВ (mV), время их протекания в секундах, длительность сегментов — участков изопотенциальной линии между соседними зубцами и интервалов, включающих в себя зубец и прилегающий к нему сегмент. Рис. 25. Электрокардиограмма во II стандартном отведении. Основные элементы ЭКГ Формирование ЭКГ (ее зубцов и интервалов) обусловлено распространением возбуждения в сердце и отображает этот процесс. Зубцы возникают и развиваются, когда между участками возбудимой системы имеется разность потенциалов, т. е. какая-то часть системы охвачена возбуждением, а другая нет. Изопотенциальная линия возникает в случае, когда в пределах возбудимой системы нет разности потенциалов, т. е. вся система не возбуждена или, наоборот, охвачена возбуждением. С позиций электрокардиологии, сердце состоит из двух возбудимых систем — двух мышц: мышцы предсердий и мышцы желудочков. Эти две мышцы разделены соединительнотканной фиброзной перегородкой. Связь между двумя мышцами и передачу возбуждения осуществляет проводящая система сердца. В силу того, что мышечная масса проводящей системы мала, генерируемые в ней потенциалы при обычных усилениях стандартных электрокардиографов не улавливаются. Следовательно, зарегистрированная ЭКГ отражает последовательный охват возбуждением сократительного миокарда предсердий и желудочков. Зубец Р отображает охват возбуждением предсердий, и получил название предсердного. Далее возбуждение распространяется на предсердно-желудочковый узел и движется по проводящей системе желудочков. В это время электрокардиограф регистрирует изопотенциальную линию (оба предсердия полностью возбуждены, оба желудочка еще не возбуждены, а движение возбуждения по проводящей системе желудочков не улавливается электрокардиографом — сегмент PQна ЭКГ). В предсердиях возбуждение распространяется преимущественно по сократительному миокарду лавинообразно от синусно-предсердной к предсердно-желудочковой области. Скорость распространения возбуждения по специализированным внутрипредсердным пучкам в норме примерно равна скорости распространения по сократительному миокарду предсердия, поэтому охват возбуждением предсердий отображается монофазным зубцом Р. Охват возбуждением желудочков осуществляется посредством передачи возбуждения с элементов проводящей системы на сократительный миокард, что обусловливает сложный характер комплекса QRS, отражающего охват возбуждением желудочков. При этом зубец Qобусловлен возбуждением верхушки сердца, правой сосочковой мышцы и внутренней поверхности желудочков, зубец R— возбуждением основания сердца и наружной поверхности желудочков. Процесс полного охвата возбуждением миокарда желудочков завершается к окончанию формирования зубца S. Теперь оба желудочка возбуждены и сегмент STнаходится на изопотенциальной линии вследствие отсутствия разности потенциалов в возбудимой системе желудочков.
Зубец Т отражает процессы реполяризации, т. е. восстановление нормального мембранного потенциала клеток миокарда. Эти процессы в различных клетках возникают не строго синхронно. Вследствие этого появляется разность потенциалов между еще деполяризованными участками миокарда (т. е. обладающими отрицательным зарядом) и участками миокарда, восстановившими свой положительный заряд. Указанная разность потенциалов регистрируется в виде зубца Т. Этот зубец — самая изменчивая часть ЭКГ. Между зубцом Т и последующим зубцом Р регистрируется изопотенциальная линия, так как в это время в миокарде желудочков и в миокарде предсердий нет разности потенциалов. Видимого отображения на ЭКГ зубца, соответствующего реполяризации предсердий, нет в связи с тем, что он по времени совпадает с мощным комплексом QRSи поглощается им. При поперечной блокаде сердца, когда не каждый зубец Р сопровождается комплексом QRS, наблюдается предсердный зубец Та(T-атриум), отображающий реполяризацию предсердий. Общая продолжительность электрической систолы желудочков (Q—T) почти совпадает с длительностью механической систолы (механическая систола начинается несколько позже, чем электрическая). Электрокардиограмма позволяет оценить характер нарушений проведения возбуждения в сердце. Так, по величине интервала Р—Q(от начала зубца Р и до начала зубца Q) можно судить о том, совершается ли проведение возбуждения от предсердия к желудочку с нормальной скоростью. В норме это время равно 0,12—0,2 с. Общая продолжительность комплекса QRSотражает скорость охвата возбуждением сократительного миокарда желудочков и составляет 0,06—0,1 сек. Процессы деполяризации и реполяризации возникают в разных участках миокарда неодновременно, поэтому величина разности потенциалов между различными участками сердечной мышцы на протяжении сердечного цикла изменяется. Условную линию, соединяющую в каждый момент две точки, обладающие наибольшей разностью потенциалов, принято называть электрической осью сердца. В каждый данный момент электрическая ось сердца характеризуется определенной величиной и направлением, т. е. обладает свойствами векторной величины. Вследствие неодновременности охвата возбуждением различных отделов миокарда этот вектор изменяет свое направление. Оказалась полезной регистрация не только величины разности потенциалов сердечной мышцы (т. е. амплитуды зубцов на ЭКГ), но и изменений направления электрической оси желудочков сердца. Одновременная запись изменений величины разности потенциалов и направления электрической оси получило название векторэлектрокардиограммы(ВЭКГ).
|