Главная страница
Навигация по странице:

  • Состояние мышечного тонуса мезенцефального животного

  • Мозжечок: афферентные и эфферентные связи, роль мозжечка в регуляции тонуса мышц в обеспечении двигательной активности. Симптомы поражения мозжечка. Мозжечок.

  • Мозжечковый контроль двигательной активности

  • Промежуточный мозг: структуры и их функции. Роль таламуса и гипоталамуса в регуляции гомеостаза организма и осуществлении сенсорной функции.

  • Подбугровая область (гипоталамус).

  • Роль таламуса и гипоталамуса в регуляции гомеостаза организма и осуществлении сенсорной функции Таламус

  • Участие гипоталамуса в регуляции эндокринной сферы

  • Центральные механизмы организации движений. Пирамидная и экстрапирамидная системы: главные структуры, их функции. Стриопалидарная система и ее функции.

  • Центральные механизмы организации движений

  • Пирамидная и экстрапирамидная системы: главные структуры, их функции Пирамидная система

  • Строение пути и его части

  • Экстрапирамидная система

  • Понятия возбудимости и раздражимости. Раздражители определение, их виды, характеристика. Мембранный потенциал покоя параметры, механизм формирования. Понятия возбудимости и раздражимости Возбудимость


    Скачать 2.86 Mb.
    НазваниеПонятия возбудимости и раздражимости. Раздражители определение, их виды, характеристика. Мембранный потенциал покоя параметры, механизм формирования. Понятия возбудимости и раздражимости Возбудимость
    Дата14.02.2020
    Размер2.86 Mb.
    Формат файлаdocx
    Имя файлаOTVETY_FIZO_neredakt (1).docx
    ТипДокументы
    #108471
    страница5 из 40
    1   2   3   4   5   6   7   8   9   ...   40
    1   2   3   4   5   6   7   8   9   ...   40

    Средний мозг: основные структуры и их функции, статические и статокинетические рефлексы

    В строении среднего мозга уже окончательно утрачиваются сегментарные признаки. Клеточные элементы образуют здесь сложные скопления в виде ядерных образований, относящихся как непосредственно к среднему мозгу, так и входящих в состав ретикулярной формации мозгового ствола. Ядра сенсорного, афферентного значения располагаются в дорзальной части среднего мозга (четверохолмие), ядра эфферентного значения - в вентральной его части (красное ядро, черная субстанция и др.).

    Мост (pons cerebri, pons Varolii) располагается выше продолговатого мозга и выполняет сенсорные, проводниковые, двигательные, интегративные рефлекторные функции. В состав моста входят ядра лицевого, тройничного, отводящего, преддверно-улиткового нерва (вестибулярные и улитковые ядра), ядра преддверной части преддверно-улиткового нерва (вестибулярного нерва): латеральное (Дейтерса) и верхнее (Бехтерева). Важной структурой моста является средняя ножка мозжечка. Именно она обеспечивает функциональные компенсаторные и морфологические связи коры большого мозга с полушариями мозжечка.

    Сенсорные функции моста обеспечиваются ядрами преддверно-улиткового, тройничного нервов. Улитковая часть преддверно-улиткового нерва заканчивается в мозге в улитковых ядрах; преддверная часть преддверно-улиткового нерва — в треугольном ядре, ядре Дейтерса, ядре Бех-терева. Здесь происходит первичный анализ вестибулярных раздражений их силы и направленно-сти. Чувствительное ядро тройничного нерва получает сигналы от рецепторов кожи лица, перед-них отделов волосистой части головы, слизистой оболочки носа и рта, зубов и конъюнктивы глазного яблока. Лицевой нерв (п. facialis) иннервирует все мимические мышцы лица. Отводящий нерв (п. abducens) иннервирует прямую латеральную мышцу, отводящую глазное яблоко кнаружи. Двигательная порция ядра тройничного нерва (п. trigeminus) иннервирует жевательные мышцы, мышцу, натягивающую барабанную перепонку, и мышцу, натягивающую небную занавеску.

    Через средний мозг в составе т.н. ножек мозга и мозжечка проходят многочисленные проводящие пути, связывающие в восходящем и нисходящем направлениях между собой с одной стороны большой мозг и мозжечок, с другой - продолговатый и спинной мозг.

    Наиболее крупным сенсорным образованием среднего мозга является четверохолмие. Передние его бугры являются центрами, обеспечивающими ориентировочные рефлексы организма на световые раздражители. Задние бугры - центры слуховых ориентировочных рефлексов.

    Наиболее важными ядрами среднего мозга являются красное ядро, черное вещество и ядра черепных (глазодвигательного и блокового) нервов, а также ядра ретикулярной формации.
    Состояние мышечного тонуса мезенцефального животного

    Красные ядра располагаются в верхней части ножек мозга. Они связаны с корой большого мозга (нисходящие от коры пути), под¬корковыми ядрами, мозжечком, спинным мозгом (руброспинальный путь). Нарушение связей красных ядер с ретикулярной формацией продолговатого мозга ведет к децеребрационной ригидности. Это состояние характеризуется сильным напряжением мышц-разгибателей конечностей, шеи, спины. Основной причиной воз-никновения децеребрационной ригидности служит выраженное активирующее влияние латерального вестибу¬лярного ядра (ядро Дейтерса) на мотонейроны разгибателей. Это влияние максимально в отсутствие тормозных влияний красного ядра и вышележащих структур, а также мозжечка. При перерезке мозга ниже ядра латерального вестибулярного нерва децеребрационная ригидность исчезает.



    Мозжечок: афферентные и эфферентные связи, роль мозжечка в регуляции тонуса

    мышц в обеспечении двигательной активности. Симптомы поражения мозжечка.
    Мозжечок.   Мозжечок  входит  в состав  заднего   мозга и занимает большую часть задней черепной ямки. Мозжечок связан с другими отделами мозга с помощью афферентных и эфферентных путей. Афферентные пути идут к нему из спинного, продолговатого мозга, варолиевого моста, четверохолмия. Мозжечок (cerebellum, малый мозг) — одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций.

    Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга. 

    В кору мозжечка от кожных рецепторов, мышц, суставных оболочек, надкостницы сигналы поступают по так называемым спинно-мозжечковым трактам: по заднему (дорсальному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. Ядра мозжечка имеют высокую тоническую актив­ность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.

    Мозжечковый контроль двигательной активности. Деятельность мозжечка имеет ближайшее отношение к осуществлению произвольных движений. Однако повреждение мозжечка не влечет за собой двигательных и сенсорных параличей. Эфферентные сигналы из мозжечка к спинному мозгу регулируют силу мышечных сокращений, обеспечивают способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью этого движения, быстро переходить от сгибания к разгибанию и наоборот.  Мозжечок обеспечивает синергию сокращений разных мышц при сложных движениях. В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций. Лючиани установил, что при удалении мозжечка у животных или поражении его у человека наступают следующие характерные симптомы:

    1)     астения (astenia — слабость) — снижение силы мышечного сокращения, быстрая утомляемость мышц;

    2)     астазия (astasia, от греч. а — не, stasia — стояние) — утрата способности к длительному сокращению мышц, что затрудняет сто­яние, сидение и т. д.;

    3)     дистония (distonia — нарушение тонуса) — непроизвольное повышение или понижение тонуса мышц;

    4)     тремор (tremor — дрожание) — дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении;

    5)     дисметрия (dissymmetric — нарушение меры) — расстройство равномерности движений, выражающееся либо в излишнем, либо недостаточном движении. Больной пытается взять предмет со стола и проносит руку за предмет (гиперметрия) или не доносит ее до предмета (гипометрия);

    6)     атаксия (ataksia, от греч. а — отрицание, taksia — порядок) — нарушение координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в опре­деленной последовательности. Проявлениями атаксии являются так­ же адиадохокинез, асинергия, пьяная-шаткая походка.

    7) дизартрия (disartria) — расстройство организации речевой моторики. При повреждении мозжечка речь больного становится растянутой, слова иногда произносятся как бы толчками (сканди­рованная речь).

    К этим симптомам следует добавить адиадохокинез, дизэквилибрию. дисметрию - различные проявления нарушения координации движений.



    Промежуточный мозг: структуры и их функции. Роль таламуса и гипоталамуса в

    регуляции гомеостаза организма и осуществлении сенсорной функции.

    Промежуточный мозг: структуры и их функции

    Главными образованиями промежуточного мозга являются зрительные бугры (таламус) и подбугровая область (гипоталамус). Промежуточный мозг (diencephalon) интегрирует сенсорные, двигательные и вегетативные реакции, необходимые для целостной деятельности организма. Основными образованиями промежуточного мозга являются таламус, гипоталамус, который состоит из свода и эпифиза, и таламической области, которая включает в себя таламус, эпитала-мус и метаталамус.

    Зрительный бугор (thalamus opticus) является своеобразной сенсорной промежуточной станцией - областью переключения всех афферентных путей, идущих к коре больших полушарий.

    Подбугровая область (гипоталамус). В состав подбугровой области входят следующие основные ядра: серый бугор, тело Льюиса, nucleus paraventricularis, nucleus supraopthicus, corpora mamillaria. Ядра гипоталамической области связаны с ядрами вегетативных нервов среднего, продолговатого и спинного мозга. Волокна, выходящие из надоптического ядра, проходят в ножке гипофиза и иннервируют заднюю долю гипофиза. Афферентные влияния к ядрам подбугровой области поступают от зрительных бугров, хвостатого тела, чечевицы, красного ядра, черной субстанции и ядер продолговатого мозга. Помимо этого, к ядрам гипоталамуса подходят волокна от различных отделов коры полушарий.
    Роль таламуса и гипоталамуса в регуляции гомеостаза организма и осуществлении сенсорной функции

    Таламус имеет большое значение и как центр формирования ощущений, в частности - как высший центр формирования болевой чувствительности. Это доказывается опытами с раздражением коры и ядер таламуса, клиникой поражений таламуса.

    Вместе с тем, зрительные бугры еще являются и центрами непроизвольных выразительных движений, центром эмоциональных проявлений. Разрушение таламуса приводит к выпадению чувствительности и выпадению сокращений мускулатуры лица. непроизвольно сокращающейся при эмоциях - маска страха, гнева, плача и т.п.. Произвольное управление лицевой мускулатурой сохраняется. Если же таламус сохранен, а нарушена моторная зона коры, то наоборот, непроизвольное выражение эмоций остается, произвольное же выпадает.
    Гипоталамус является главным (высшим) центром автономной регуляции функций органов. В нем расположены центры регуляции обмена веществ, температуры тела, перистальтики. Именно в его центрах формируется чувство голода и жажды. Кроме того, он отвечает за поведенческие реакции, связанные агрессивностью и размножением. В целом его роль в регуляции функций жизнеобеспечения организма настолько велика, что он считается главной структурой мозга по регуляции гомеостаза.

    Характер афферентных и эфферентных путей, связывающих гипоталамус с остальными отделами нервной системы, указывает на то, что он является главным подкорковым центром вегетативной нервной системы, промежуточным звеном, связывающим основные воспринимающие образования НС с вегетативными ганглиями на периферии.

    Участие гипоталамуса в регуляции эндокринной сферы. Существенное значение для водного и солевого обмена имеет связь гипоталамической области с гипофизом. Перерезка нервного пути, идущего от надоптического ядра к задней доле гипофиза, вызывает несахарное мочеизнурение, вследствие того, что в гипофиз перестает поступать антидиуретический гормон. Гипоталамус связан с гипофизом с помощью нейросекреторной системы, при этом нейроны гипоталамуса вырабатывают вещества, которые специфически влияют на гипофиз, а через него - на обмен веществ в целом.




    Центральные механизмы организации движений. Пирамидная и экстрапирамидная

    системы: главные структуры, их функции. Стриопалидарная система и ее функции.

    Центральные механизмы организации движений

    По А. Р. Лурия, реальным анатомическим и функциональным образованием, включенным в реализацию двигательного акта, помимо собственно моторных зон, является почти вся кора больших полушарий. К эфферентным механизмам исполнения движений традиционно относят две взаимосвязанные, но относительно автономные системы — экстрапирамидную и пирамидную, корковые отделы которых составляют единую сенсомоторную зону коры.

    Пирамидная и экстрапирамидная системы: главные структуры, их функции

    Пирамидная система (кортико-спинальный путь) начинается от моторных (крупных пирамидных) клеток Беца, находящихся в основном в 5-м слое моторной коры 4-го поля передней центральной извилины.

    Строение пути и его части

    Аксоны клеток Беца, покинув кору, через внутреннюю капсулу спускаются в ножки мозга, пронизывают варолиев мост, продолговатый мозг, где на его передней поверхности образуют два выпуклых валика (пирамиды), в нижней части которых производят неполный перекрест. Перекрещенная в пирамидах часть волокон (первая группа) попадает в боковые столбы спинного мозга и, переключаясь на вставочные нейроны или непосредственно на мотонейроны передних рогов спинного мозга, в дальнейшем обслуживает практически весь двигательный аппарат.

    Неперекрещенная часть волокон (вторая группа) спускается преимущественно до шейных и грудных сегментов спинного мозга, лишь на их уровне переходя на другую сторону. Этот поток аксонов функционально связан с управлением мышцами шеи, туловища и промежности.

    Таким образом, моторные зоны коры левого полушария в подавляющем большинстве случаев являются аппаратом двигательной иннервации правой половины тела и наоборот, а правого полушария — левой. Кроме того, в составе пирамидного пути имеются волокна с двойным перекрестом — на уровне мозолистого тела и в продолговатом мозгу. Эти морфологические особенности создают возможность корковой иннервации двигательного аппарата на той же стороне тела и играют позитивную  роль в компенсаторных процессах при локальных поражениях мозга.

    Третья группа волокон пирамидной системы, после частичного перекреста на уровне среднего мозга, варолиева моста и продолговатого мозга, заканчивается на двигательных ядрах черепно-мозговых нервов, связанных с иннервацией скелетных мышц головы и шеи, в том числе мышц артикуляторного аппарата. Ядра этих нервов получают волокна от двигательных зон коры обоих полушарий, за исключением нервов (двух из двенадцати), иннервирующих мимические мышцы лица, расположенные ниже глазной щели, и мьшщы языка. К этим ядрам подходят волокна только от противоположного полушария (нижнего отдела передней центральной извилины). Наличие двухсторонней корковой иннервации обеспечивает сохранность функций большинства мышц лица (глазодвигательных, жевательных мышц глотки, гортани и др.) при односторонних патологических процессах.
    Пирамидная система участвует в организации преимущественно точных, дискретных, дозированных, пространственно-ориентированных движений, в подавлении мышечного тонуса и полностью подчинена произвольному контролю. Выпадение функций пирамидного пути проявляется в невозможности произвольных движений.

    Характер паралича оказывается различным в зависимости от локализации повреждения.  Повышение мышечного тонуса — основной признак центрального паралича, получившего название спастического.  Периферические поражения вызывают вялый атонический паралич. Полное одностороннее выпадение движений руки и ноги (гемиплегия) появляется при обширных очагах, затрагивающих переднюю центральную извилину. Однако через некоторое время утраченные движения могут до определенной степени восстановиться за счет деятельности других нисходящих систем,  связывающих кору головного  мозга со  спинным мозгом и способных дублировать  функции пирамидной системы.  Частично потерянными остаются лишь тонкие движения пальцев.

    Пирамидная система не может работать изолированно и нуждается в тоническом пластическом фоне, обеспечиваемом экстрапирамидной системой.
    Экстрапирамидная система является филогенетически более ранней и обеспечивает сравнительно простые автоматизированные движения. Она управляет в основном непроизвольным компонентом движений, к которому относятся поддержание позы, регуляция физиологического тремора, физиологические синергии, общая согласованность двигательных актов, их интеграция и пластичность.

    Структурный состав  экстрапирамидной системы среди исследователей окончательно не согласован. Традиционно в ней различают корковый и подкорковый отделы.  К первому относят 6-е, 8-е поля премоторной коры и 1-е и 2-е поля сенсомоторной области. Подкорковый отдел сложен и включает в себя стриопаллидарную систему, некоторые ядра таламуса, красное ядро и черную субстанция ножек мозга, мозжечок и ретикулярную формацию продолговатого мозга. Выход экстрапирамидной системы в спинной мозг осуществляется через красное ядро (в нем происходит подключение регулирующих влияний от мозжечка, промежуточного мозга и подкорковых ядер). Заканчивается эта проводящая система на передних рогах спинного мозга.
    В клинике различают заболевания, обусловленные поражением преимущественно филогенетически старой или новой части экстрапирамидной системы.

    Рис. 1




    Новая часть экстрапирамидной системы (неостриатум) оказывает в основном тормозящее влияние на старую (паллидарную), поэтому при выпадении или снижении функции неостриатума старая часть экстрапирамидной системы как бы растормаживается и у больного на фоне сниженного тонуса мускулатуры (атонии) и общей неподвижности (адинамии) появляются насильственные движения в руке, ноге или головой (гиперкинезы). Возможно появление насильственного смеха или плача. Эти, иногда сложные, гиперкинезы никогда не складываются в целенаправленные координированные действия, хотя внешне могут напоминать умышленное гримасничанье, кривляние и нарочитые ужимки. К числу гиперкинетических расстройств относят и тики — стереотипно повторяющиеся клонические судороги одной мышцы или группы мышц, обычно мышц шеи и лица.

    При поражении старого отдела экстрапирамидной системы возникает  противоположная картина. У больных появляется скованность (ригидность), бедность  и замедленность  движений (брадикинезия)  и речи  (брадипалия)  при одновременном повышении тонуса  мускулатуры —  синдрома паркинсонизма, сопровождающегося жестикуляторной и мимической ограниченностью в виде маскообразного лица. На этом фоне наблюдается тремор пальцев рук, нередко захватывающий нижнюю челюсть и язык. Несмотря на удовлетворительную силу мышц, больные испытывают затруднение при переходе из покоя в движение и наоборот.

    При поражениях экстрапирамидной системы также возникают нарушения мышечного тонуса, составляющего основу позы, — происходит застывание в определенной позе (поза манекена). Больному трудно сделать первое движение, затем он может «разойтись» и двигаться быстрее, но мелкими шажками. При желании остановиться не всегда способен это реализовать и некоторое время движется вперед или в стороны.

    Патология бледного шара и черной субстанции ножек мозга приводит к  нарушению пластического тонуса мышц (при исполнении движений возникает феномен «зубчатого колеса» — при медленном разгибании предплечья или голени в сгибателях ощущается не равномерное сопротивление, а прерывистое), а патология мозжечка как одной из структур экстрапирамидной системы — к расстройствам координации двигательных актов (атаксии).


    написать администратору сайта