Главная страница
Навигация по странице:

  • способность к

  • Рефлекторный принцип нервной регуляции. Развитие концепции о рефлексе и рефлекторной дуге (Декарт, И.М.Сеченов, И.П.Павлов). Саморегуляция и ее

  • Развитие концепции о рефлексе и рефлекторной дуге (Декарт, И.М.Сеченов, И.П.Павлов)

  • Общая схема функциональной системы регуляции физиологических констант организма (по П.К.Анохину)

  • Нейроны: классификации, функциональные структуры. Глиальные клетки: виды и основные функции. Нейроны: классификации, функциональные структуры

  • Вставочные, или интернейроны

  • Глиальные клетки: виды и основные функции

  • Процессы торможения в ЦНС: механизмы первичного и вторичного торможения. Понятие парабиоза, фазы развития.

  • Понятие парабиоза, фазы развития Парабиоз

  • Уравнительная

  • Понятия возбудимости и раздражимости. Раздражители определение, их виды, характеристика. Мембранный потенциал покоя параметры, механизм формирования. Понятия возбудимости и раздражимости Возбудимость


    Скачать 2.86 Mb.
    НазваниеПонятия возбудимости и раздражимости. Раздражители определение, их виды, характеристика. Мембранный потенциал покоя параметры, механизм формирования. Понятия возбудимости и раздражимости Возбудимость
    Дата14.02.2020
    Размер2.86 Mb.
    Формат файлаdocx
    Имя файлаOTVETY_FIZO_neredakt (1).docx
    ТипДокументы
    #108471
    страница3 из 40
    1   2   3   4   5   6   7   8   9   ...   40
    1   2   3   4   5   6   7   8   9   ...   40

    Физиологические свойства гладких мышц.

    Медленные часто ритмические сокращения гладкомышечных стенок внутренних органов (кишечник, желудок, мочеточники, протоки пищеварительных желез) обеспечивает перемещение содержимого этих органов. Тоническое сокращение стенок артерий и артериол поддерживает оптимальный уровень кровяного давления и кровоснабжение органов и тканей.

    Гладкие мышцы построены из веретенообразных одноядерных мышечных клеток. Волокна связаны между собой низкоомными щелевыми контактами. Гладкая мышца функционирует как синцитий – функциональное образование, в котором возбуждение способно беспрепятственно передаваться с одной клетки на другую по крайней мере в пределах одного мышечного пучка, являющегося функциональной единицей гладкой мышцы.

    ПП обнаруживает постоянные небольшие колебания, обеспечивающие возникновение ПД при достижении КП. Величина ПП меньше, чем в скелетных мышцах.

    ПД двух основных типов: пикоподобные и ПД с выраженным плато.

    При удалении из омывающего раствора ионов Na возникают полноценные ПД у гладких мышц. Удаление ионов Са ведет у обратимому угнетению ПД.

    Свойства гладких мышц

    Гладкие мышцы являются тоническими. Их сокращения медленные, длительные, но довольно сильные и не требуют больших энергетических затрат. Расслабление мышечных волокон после их сокращения протекает очень медленно. Гладкие мышцы способны сохранять приданную им растяжением длину без изменения напряжения. Возбудимость гладких мышц низкая. Обычно они возбуждаются действием не одного, а нескольких импульсов. При этом даже относительно редкие раздражения могут вызвать стойкое непрерывное сокращение.

    Скорость проведения импульсов и волны сокращения гладких мышц значительно меньше скелетных (от 2 до 15 смс). Работа гладкой мускулатуры регулируется импульсами, поступающими к ней по вегетативным нервам: меняется уровень ее активности, т. е. сила и частота сокращения. Гладкомышечные волокна способны сокращаться благодаря их растяжению без участия нервных воздействий.

    Гладкие мышцы образуют стенки (мышечный слой) внутренних органов и кровеносных сосудов. В миофибриллах гладких мышц нет поперечной исчерченности. Это обусловлено хаотичным расположением сократительных белков. Волокна гладких мышц относительно короче.

    Гладкие мышцы менее возбудимы, чем поперечнополосатые. Возбуждение по ним распространяется с небольшой скоростью – 2-15 см/с. Возбуждение в гладких мышцах может передаваться с одного волокна на другое, в отличие от нервных волокон и волокон поперечнополосатых мышц.

    Сокращение гладкой мускулатуры происходит более медленно и длительно.

    Рефрактерный период в гладких мышцах более продолжителен, чем в скелетных.

    Важным свойством гладкой мышцы является ее большая пластичность, т.е. способность сохранять приданную растяжением длину без изменения напряжения. Данное свойство имеет существенное значение, так как некоторые органы брюшной полости (матка, мочевой пузырь, желчный пузырь) иногда значительно растягиваются.

    Характерной особенностью гладких мышц является их способность к автоматической деятельности, которая обеспечивается нервными элементами, заложенными в стенках гладкомышечных органов.

    Адекватным раздражителем для гладких мышц является их быстрое и сильное растяжение, что имеет большое значение для функционирования многих гладкомышечных органов (мочеточник, кишечник и другие полые органы)

    Особенностью гладких мышц является также их высокая чувствительность к некоторым биологически активным веществам (ацетилхолин, адреналин, норадреналин, серотонин и др.).

    Гладкие мышцы иннервируются симпатическими и парасимпатическими вегетативными нервами, которые, как правило, оказывают противоположное влияние на их функциональное состояние.



    Рефлекторный принцип нервной регуляции. Развитие концепции о рефлексе и

    рефлекторной дуге (Декарт, И.М.Сеченов, И.П.Павлов). Саморегуляция и ее

    проявления. Общая схема функциональной системы регуляции физиологических

    констант организма (по П.К.Анохину).

    Рефлекторный принцип нервной регуляции

    Рефлекторная функция представляет собой основной специфичный для ЦНС вид деятельности, проявляющийся в осуществлении сложных своеобразных и высокодифференцированных реакций, получивших название рефлексов. или рефлекторных реакций. Всякий рефлекторный акт начинается при воздействии внешнего или внутреннего раздражителя на рецепторный аппарат и заканчивается каким-либо изменением деятельности организма.

    Развитие концепции о рефлексе и рефлекторной дуге (Декарт, И.М.Сеченов, И.П.Павлов)

    Структурной основой рефлекса является рефлекторная дуга, состоящей из рецепторной, афферентной проводниковой, центральной, эфферентной части и рабочего органа.

    В зависимости от сложности структуры рефлекторной дуги различают моно- и полисинаптические рефлексы. В простейшем случае импульсы, поступающие в центральные нервные структуры по аф­ферентным путям, переключаются непосредственно на эфферентную нервную клетку, т. е. в системе рефлекторной дуги имеется одно синаптическое соединение. Такая рефлекторная дуга называется моносинаптической (например, рефлекторная дуга сухожильного рефлекса в ответ на растяжение). Наличие в структуре рефлекторной дуги двух и более синаптических переключений (т. е. три и более нейронов), позволяет характеризовать ее как полисинаптическую.

    Общая схема функциональной системы регуляции физиологических

    констант организма (по П.К.Анохину)

    Ученик Павлова П.К. Анохин, создав концепцию о функциональной системе, как основном принципе саморегуляции функций, дополнил схему рефлекторной дуги представлением об обратной афферентации из рабочего органа в центр, которая несет информацию о состоянии рабочего органа, о ходе выполнения команды и о результатах деятельности. Представление о рефлекторной реакции как о целесообразном ответе организма диктует необходимость дополнить рефлекторную дугу еще одним звеном — петлей обратной связи, призванной установить связь между реализованным результатом рефлекторной реакции и нервным центром, выдающим исполнительные команды.

    Обратная связь - важнейший принцип функционирования информационноуправляющих систем - трансформирует открытую рефлекторную дугу в закрытую. В результате рефлекторная дуга превратилась в рефлекторное кольцо, которое является материальным субстратом для саморегуляции, в ходе которой в ходе ответной реакции постоянно происходит корректировка команд рабочим органам и наилучшее выполнение окончательного результата.
    Следующим этапом развития рефлекторной теории является открытие И.П. Павловым (1912) нового класса рефлексов - условных, которые не являются наследственными, а приобретаются индивидуумом в течение его жизни на основе личного опыта. По сути, условный рефлекс есть ассоциация двух или более безусловных рефлексов, которая возникает при достаточно частом повторении стереотипных сочетаний двух сигналов.

    Та область тела, раздражение которой вызывает определенный рефлекс, называется рефлексогенной зоной, или рецептивным полем рефлекса. Рецептивные поля разных рефлексов могут перекрываться.

    При осуществлении любого рефлекса нервные импульсы не ограничиваются рефлекторной дугой данного рефлекса. Они широко распространяются в ЦНС по многочисленным проводящим путям.



    Нейроны: классификации, функциональные структуры. Глиальные клетки: виды и основные функции.

    Нейроны: классификации, функциональные структуры

    Нейроны в ЦНС разделяют на афферентные (чувствительные), эфферентные (эффекторные) и промежуточные, или вставочные (ассоциативные).

    Афферентные (сенсорные, чувствительные, рецепторные) нейроны проводят возбуждение от рецепторов в ЦНС. Их тела располагаются, как правило, вне ЦНС, в спинномозговых ганглиях или ганглиях черепно-мозговых нервов, а также в зрительных буграх. В отличие от других нервных клеток они псевдоуниполярны , так как имеют сросшиеся между собой два отростка - аксон, по которому возбуждение поступает от сомы в спинной и головной мозг, и длинный дендрит, который уходит на периферию и образует чувствительные нервные окончания - рецепторы - во всех органах и тканях организма.

    Эффекторные нейроны посылают импульсы к периферическим органам и тканям. К ним относятся мотонейроны, посылающие возбуждение к мышцам, от ядер головного мозга на нижележащие нейроны, а также нервные клетки, лежащие в ганглиях вегетативной нервной системы.

    Вставочные, или интернейроны, составляют самую многочисленную группу. Им принадлежит функция связи между рецепторными и эффекторными нервными клетками. По характеру вызываемого ими эффекта промежуточные нейроны подразделяются на возбуждающие и тормозящие.
    В цитоплазме нейрона обнаруживают т.н. вещество Ниссля - это гранулы эндоплазматического ретикулюма, богатые рибосомами. Его много вокруг ядра. Под мембраной клетки эндоплазматический ретикулюм образует цистерны, ответственные за поддержание концентрации К+ под мембраной. Рибосомы - это колоссальные фабрики белка. Агранулярный ретикулюм представлен аппаратом Гольджи, который как бы окружает всю нервную клетку изнутри. На нем имеются лизосомы, содержащие различные ферменты, пузырьки с гранулами медиатора. И в теле клетки, и в отростках много митохондрий. Место отхождения аксона от тела нервной клетки (аксонный холмик) имеет наибольшее значение в возбуждении нейрона. Это - триггерная зона нейрона, именно здесь легче всего возникает возбуждение. В этой области на протяжении 50-100 мк. аксон не имеет миэлиновой оболочки, поэтому аксонный холмик и начальный сегмент аксона обладают наименьшим порогом раздражения (дендрит - 100 мв, сома - 30 мв, аксонный холмик - 10 мв).

    Дендриты тоже играют определенную роль в возникновении возбуждения нейрона. На них в 15 раз больше синапсов, чем на соме, поэтому ПД, проходящие по дендритам к соме, способны легко деполяризовать сому и вызвать залп импульсов по аксону.
    Глиальные клетки: виды и основные функции

    Нервные клетки обычно окружены вспомогательными глиальными клетками, занимающими примерно 50% объема ЦНС. Их число превышает число нейронов. Глиальные клетки являются невозбудимыми и выполняют функцию опоры и защиты нейронов.

    Различают следующие виды глии: астроглия, олигодендроглия, микроглия.

    Астроглия — представлена многоотростчатыми клетками. Их раз­меры колеблются от 7 до 25 мкм. Большая часть отростков закан­чивается на стенках сосудов. Ядра содержат ДНК, протоплазма имеет аппарат Гольджи, центрисому, митохондрии. Астроглия служит опо­рой нейронов, обеспечивает репаративные процессы нервных ство­лов, изолирует нервное волокно, участвует в метаболизме нейронов.

    Олигодендроглия — это клетки, имеющие один отросток. Количе­ство олигодендроглии возрастает в коре от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендроглии больше, чем в коре. Она участвует в миелинизации аксонов, в метаболизме нейронов.

    Микроглия — самые мелкие клетки глии, относятся к блужда­ющим клеткам. Они образуются из структур оболочек мозга, про­никают в белое, а затем и в серое вещество мозга. Микроглиальные клетки способны к  фагоцитозу.

    Одной из особенностей глиальных клеток является их способность к изменению своего размера. Изменение размера глиальных клеток носит ритмический характер: фазы сокращения — 90 с, расслабле­ния — 240 с, т.е. это очень медленный процесс. Средняя частота ритмических изменений варьирует от 2 до 20 в час. При этом отростки клетки набухают,  но  не  укорачиваются  в длине.

    Глиальная активность изменяется под влиянием различных биоло­гически активных веществ: серотонин вызывает уменьшение указан­ной «пульсации» олигодендроглиальных клеток, норадреналин — уси­ление. Хлорпромазин действует так же, как и норадреналин. Фи­зиологическая роль «пульсации» глиальных клеток состоит в протал­кивании аксоплазмы нейрона и влиянии на ток жидкости в меж­клеточном  пространстве.

    Физиологические процессы в нервной системе во многом зависят от миелинизации волокон нервных клеток. В центральной нервной системе миелинизация обеспечивается олигодендроглией, а в пери­ферической  —  шванновскими клетками.

    Глиальные клетки не обладают импульсной активностью, подобно нервным, однако мембрана глиальных клеток имеет заряд, форми­рующий мембранный потенциал. Его изменения медленны, зависят от активности нервной системы, обусловлены не синаптическими влияниями, а изменениями химического состава межклеточной сре­ды.   Мембранный потенциал  глии  равен  примерно  70-90  мВ.

    Глиальные клетки способны к распространению изменений по­тенциала между собой. Это распространение идет с декрементом (с затуханием). При расстоянии между раздражающим и регистриру­ющим электродами 50 мкм распространение возбуждения достигает точки регистрации за 30-60 мс. Распространению возбуждения меж­ду глиальными клетками способствуют специальные щелевые кон­такты их мембран. Эти контакты имеют пониженное сопротивление и создают условия для электротонического распространения тока от одной глиальной клетки  к другой.

    Так как глия находится в тесном контакте с нейронами, то про­цессы возбуждения нервных элементов сказываются на электричес­ких явлениях в глиальных элементах. Это влияние связывают с тем, что мембранный потенциал глии зависит от концентрации К+ в окружающей среде. Во время возбуждения нейрона и реполяризации его мембраны вход ионов К+ усиливается. Это значительно изменяет его концентрацию вокруг глии и приводит к деполяризации ее клеточных  мембран.



    Процессы торможения в ЦНС: механизмы первичного и вторичного торможения.

    Понятие парабиоза, фазы развития.

    Процессы торможения в ЦНС: механизмы первичного и вторичного торможения

    Для синапсов с химическим способом передачи возбуждения характерны синоптическая задержка проведения возбуждения, длящаяся около 0,5 мс, и развитие постсинаптического потенциала  в ответ на пресинаптический импульс. Этот потенциал при возбуждении проявляется в деполяризации постсинаптической мембраны (ВПСП), а при торможении — в гиперполяризации ее, в результате чего развивается тормозной постсинаптический потенциал (ТПСП). При возбуждении проводимость постсинаптической мембраны увеличивается.

    ВПСП возникает в нейронах при действии в синапсах ацетилхолина, норадреналина, дофамина, серотонина, глутаминовой кислоты, вещества Р.  Величина ВПСП зависит от количества выделившегося медиатора и может составлять 0,12—5,0 мВ. Под влиянием ВПСП деполяризуются соседние с синапсом участки мембраны, затем деполяризация достигает аксонного холмика нейрона, где возникает возбуждение, распространяющееся на аксон.

    ТПСП возникает при действии в синапсах глицина, гамма-аминомасляной кислоты. Они изменяют ионную проницаемость постсинаптической мембраны таким образом, что в ней открываются поры диаметром около 0,5 нм. Эти поры не пропускают ионы Na+ (что вызвало бы деполяризацию мембраны), но пропускают ионы К+ из клетки наружу, в результате чего происходит гиперполяризация постсинаптической мембраны.
    Виды торможения.

    Торможение может быть периферическим (на уровне отдельных органов) и центральным (на уровне ЦНС). Центральное торможение может быть первичным и вторичным.


    • Вторичное торможение нейрона развивается в результате его собственного возбуждения, т. е. вторично по отношению к этому возбуждению. Различают пессимальное и последовательное вторичное торможение.


    Пессимальное (запредельное) торможение развивается при снижении лабильности нервной клетки в результате истощения, утомления, нарушений трофики или при действии на клетку сверхсильных стимулов. В мембране клеток при этом обычно развивается инактивация натриевых каналов, заряд мембраны может быть отрицательным. Такое торможение имеет ярко выраженное охранительное значение.
    Последовательное торможение формируется вслед за обычным по интенсивности возбуждением. Примером может быть развитие следового положительного потенциала в мотонейронах спинного мозга, в результате чего обеспечиваются в целом невысокий ритм активности этих клеток и средний уровень тонического сокращения скелетных мышц.


    • Первичное торможение нервной клетки обусловлено влияниями других нервных клеток (тормозных нейронов), формирующих тормозные синапсы. Таким образом, первичное торможение причинно не связано с предшествующим возбуждением заторможенной клетки. Если рассматривать тормозной процесс с позиции его локализации на структурах какого-либо синапса, то можно выделить пре- и постсинаптическое торможение. Первое локализуется на пресинаптических терминалях, второе – на постсинаптических структурах рассматриваемого синапса.


    Понятие парабиоза, фазы развития

    Парабиоз – это такое состояние нерва, при котором он жив, но временно потерял способность к проведению возбуждения.

    Парабиоз возникает под влиянием на нерв токсинов, ядов, наркотиков.
    В участке действия этих веществ снижается лабильность нерва и наблюдаются 3 стадии парабиоза:


    1. Уравнительная, когда вследствие снижения лабильности нерва на раздражитель большой и малой силы наблюдается одинаковая ответная реакция.

    2. Парадоксальная, когда на раздражитель большой силы возникает малая ответная реакция, а на раздражитель малой силы – большая.


    написать администратору сайта