Методика преподования математики. Предисловие рецензенты доктор педагогических наук, профессор Н. М. Назарова кандидат педагогических наук В. В. Эк Перова М. Н
Скачать 4.24 Mb.
|
ВБК 74.3 П27 ПРЕДИСЛОВИЕ Рецензенты: доктор педагогических наук, профессор Н.М. Назарова; кандидат педагогических наук В.В. Эк Перова М.Н. 127 Методика преподавания математики в специальной (коррекционной) школе VIII вида: Учеб, для студ. дефект, фак. педвузов. — 4-е изд., перераб. — М.: Гуманит. изд. ' центр ВЛАДОС, 2001. — 408 с.: ил. — (Коррекционная 1 педагогика). ISBN 5-691-00216-3. В учебнике раскрыты задачи, методы, организация и содержание обучения математике в специальной (коррекционной) школе VIII вида (для детей с нарушением интеллекта), а также методика изучения основных тем этого учебного предмета. Рекомендуемые средства и методы обучения школьников раскрываются с учетом '• их психологического развития и потенциальных возможностей. 3-е издание учебника вышло в 1989 г. Учебник предназначен для студентов дефектологических факультетов педвузов. Может быть использован учителями специальных (коррекционных) школ, родителями детей, имеющих трудности в обучении математике. БВК74.3 Перова М.Н., 1999 «Гуманитарный издательский центр ВЛАДОС», 1999, с изменениями Серийное оформление обложки. I В ЛАД ОС», 1999 SBN 6-691-00216-8 Настоящая книга представляет собой 4-е издание учебника, вышедшего в 1989 г. Она предназначена для студентов — будущих учителей общеобразовательной специальной (коррекционной) школы VIII вида (для детей с интеллектуальным недоразвитием). Материал учебника переработан в соответствии с новым типовым положением, со стандартом общего образования умственно отсталых учащихся, а также с учетом результатов новых исследований в области коррекционной педагогики и специальной психологии, методики обучения математике и смежных дисциплин. Учебник состоит из двух разделов: 1. Общие вопросы методики обучения математике в школе VIII вида (для детей с нарушением интеллекта). 2. Частные вопросы методики обучения математике в школе VIII вида. Первый раздел открывает глава «Развитие методических основ преподавания математики во вспомогательной школе»1. В последующих главах раскрыты задачи, средства и методы обучения математике, вопросы содержания и организации преподавания математики, связь обучения математике с другими учебными предметами, трудности и особенности усвоения математических знаний учащимися с интеллектуальным недоразвитием. Рекомендуемые средства и методы обучения математике умственно отсталых школьников даны с учетом особенностей их психофизического развития и потенциальных возможностей. В учебнике показано, что изучение математики в школе VIII вида является одним из средств коррекции и социальной адаптации учащихся, подготовки их к овладению профессией. В главах учебника наряду с новыми названиями школы для умственно отсталых детей — «общеобразовательная специальная (коррекционная) школа VIII вида» может встретиться ее старое название «вспомогательная» или сокращенное «школа VIII вида». Второй раздел посвящен системе и методам работы над всеми темами курса математики, изучаемого в этой школе: арифметике целых чисел и дробей, единицам измерения величин, измерениям, .математического материала для учащихся с интеллектуальным недоразвитием представляет большие трудности, причины которых в первую очередь объясняются особенностями развития познавательной и эмоционально-волевой сферы умственно отсталых школьников. Излагаемые в учебнике методические рекомендации на результатах психолого-педагогических и методических исследований олигофренопедагогов, психологов и методистов, а результатах исследований автора в этой области. В книге нашли отражение рекомендации методистов общеобразовательных школ, касающиеся начального обучения математике, передовой педагогический опыт учителей вспомогательных школ и некоторый зарубежный опыт в области обучения детей с нарушением Хотя данный учебник предназначается в первую очередь студентов дефектологических факультетов педагогических университетов и институтов, он может быть использован учителями специальных (коррекционных) школ VIII вида, а такж всех типов специальных школ, родителями для работы с испытывающими трудности при изучении математики. РАЗДЕЛ IОБЩИЕ ВОПРОСЫ МЕТОДИКИ ОБУЧЕНИЯ МАТЕМАТИКЕ В КОРРЕКЦИОННОЙ ШКОЛЕ VIII Глава 1 РАЗВИТИЕ МЕТОДИЧЕСКИХ ОСНОВ ПРЕПОДАВАНИЯ МАТЕМАТИКИ В КОРРЕКЦИОННОЙ ШКОЛЕ VIII ВИДА Методика обучения математике в коррекционной школе VIII вида начала складываться в нашей стране в 30-е годы XX века. Основоположники коррекционной школы VIII вида в России А. Н. Грабаров, Е. В. Герье, Н. В. Чехов и др. считали, что математика должна дать умственно отсталому ребенку лишь практические приемы счета. Они утверждали, что обучение математике должно быть индивидуализировано вследствие разнообразных способностей детей, обосновывали необходимость использования конкретного материала, который должен быть хорошо знаком и интересен учащимся. В первые годы становления коррекционной школы VIII вида использовался методический опыт обучения счету прогрессивных зарубежных специалистов О. Декроли, Ж. Демора, М. Монтессори, Э. Сегена и др. Первые методические пособия по арифметике для учителей и студентов были подготовлены Н. Ф. Кузьминой-Сыромятниковой. В них достаточно полно освещались вопросы как общей, так и частной методики арифметики. Н. Ф. Кузьмина-Сыромятникова, исходя из общих задач коррекционной школы, сформулировала задачи обучения арифметике: общеобразовательную, воспитательную, практическую. Она справедливо пропагандировала использование наглядных средств при обучении арифметике, обращала внимание на четкое планирование работы по этому учебному предмету, организацию практических работ. Ею подробно разработана методика решения арифметических задач, даны рекомендации к организации самостоятельных работ. Другие работы Н. Ф. Кузьминой-Сыромятниковой («Решение арифметических задач во вспомогательной школе», «Обучение 5 арифметике в I классе вспомогательной школы», «Пропедевтика обучения арифметике») дают более развернутые методические рекомендации по соответствующим вопросам обучения арифметике. Эти пособия сыграли большую роль в подготовке студентов дефектологических факультетов к практической работе, а также в работе учителей коррекционной школы. В конце 40-х—начале 50-х годов в специальной методике математики появились экспериментальные исследования, посвященные совершенствованию обучения школьников с нарушением интеллекта, различным разделам арифметики и элементам наглядной геометрии. Так, в исследованиях К. А. Михальского, М. И. Кузьмицкой, О. П. Смалюги, М. Н. Перовой, А. А. Хилько, Р. А. Исенбаевой, А. А. Эк, Г. М. Капустиной, И. В. Зыкмановой и др. разработана методика обучения решению арифметических задач, показана роль подготовительных упражнений, направленных на обогащение практического опыта учащихся, сравнения и сопоставления, дидактических игр, наглядности, схематических рисунков, различных форм записи содержания и решения задач, а также предметно-практических упражнений, направленных на конкретизацию содержания задач. Экспериментальному исследованию подвергалась методика формирования дочисловых и числовых представлений, методика обучения умственно отсталых школьников нумерации и арифметическим вычислениям (Н. И. Непомнящая, О. Ю. Штителене, Н. Д. Богановская, В. Ю. Неаре) Исследования показали, что для успешного формирования понятия числа умственно отсталые дети должны приобрести определенный наглядно-практический опыт, что усвоение ими вычислительных приемов возможно только путем опоры на наглядность и иллюстрирование каждого выражения. Следовательно, необходима специальная методика формирования умений переносить опыт, накопленный в работе с непрерывными и дискретными множествами, на знаково-идеальный уровень. В исследованиях также разработана методика ознакомления с основными функциональными характеристиками чисел на основе измерения различными мерками и установления отношений между ними. Б. Б. Горским, И. М. Шейной экспериментально разработана новая методика изучения нумерации и арифметических действий с многозначными числами (классом тысяч), предложена система коррекционно-развивающих упражнений, практических заданий, 6 тесно связанных с профессионально-трудовым обучением жизнью. Усовершенствована методика изучения обыкновенных и десятичных дробей (Т. В. Терехова, Л. Гринько). Исследование путей совершенствования методики обучения измерению величин и действий над числами, полученными от измерений (И. Н. Манжуло, М. И. Сагатов, И. И. Финкельштейн и др.), показали, что наилучшие результаты дают целенаправленные упражнения по усвоению системы единиц измерения величин: сравнение единиц измерения, сравнение чисел, полученных от измерения с разными единичными соотношениями, сравнение чисел с одинаковыми числовыми характеристиками, но различными наименованиями, сравнение действий с числами без наименований и с наименованиями, имеющими одинаковые числовые характеристики. Поискам приемов развития активности и самостоятельности учащихся школы VIII вида в процессе работы над арифметической задачей посвящено исследование А. А. Хилько, а развитию самостоятельности при выполнении домашних заданий — исследование А. Н. Ляшенко. Каждый исследователь убедительно показывает необходимость заданий репродуктивного характера для воспитания уверенности в самостоятельных действиях и формирования прочных знаний и умений. Однако по мере развития и коррекции познавательных способностей школьников показана необходимость заданий, требующих самостоятельного поиска, умозаключений, переноса знаний в новые или нестандартные ситуации, а также заданий практического характера (несложное моделирование, графические работы, измерения, дидактические игры, экскурсии и т. д.). Значение и приемы развития мотивации в процессе обучения математике убедительно показаны в исследовании Ю. Ю. Пумпу-тиса, который пришел к выводам, что, когда действия учеников мотивированы, когда они могут полученные на уроках математики знания применить в своей бытовой или трудовой деятельности, качество усвоения математического материала возрастает. Развитию познавательного интереса к математике способствует в младших классах использование дидактических игр, занимательных упражнений, предметно-практической деятельности детей, а в старших классах осознание практической значимости математических знаний (М.Н. Перова). Изучена проблема обучения школьников с интеллектуальным нарушением элементам наглядной геометрии. Разработаны задачи, последовательность и система изучения геометрического материала, методы и средства обучения и контроля, организация обучения элементам наглядной геометрии, установление более тесной связи геометрических знаний с жизнью, профессиональным трудом (П. Г. Тишин, М. Н. Перова, В. В. Эк и др.). Установлено, что неоднородность состава учащихся коррекционной школы, разные возможности усвоения математических знаний в зависимости от тяжести и степени дефекта требуют дифференцированного, индивидуального подхода на уроках математики (В. П. Гриханов, В. В. Эк). Исследованы особенности использования чертежно-графичес-ких, измерительных и вычислительных навыков в трудовой деятельности учащихся коррекционной школы (Т. В. Варенова). Показано, что без специальной организации обучения профиль труда не оказывает должного влияния на математическую подготовку умственно отсталых школьников, в то время как уровень математических знаний, умений и навыков играет важную роль в овладении рабочей специальностью. Целенаправленная реализация межпредметных связей математики и профессионально-трудового обучения положительно повлияла на развитие измерительных и чертежных навыков, на возможность их использования в различных ситуациях. В книге «Обучение учащихся I—IV классов коррекционной школы» (М., 1982), в главе «Обучение математике», написанной В. В. Эк, и в ее книге «Обучение математике учащихся младших классов вспомогательной школы» (М., 1990) большое внимание уделяется пропедевтике обучения математике, изучению возможностей детей с нарушением интеллекта в овладении математическими знаниями, реализации дифференцированного подхода на уроках математики, даются конкретные методические советы учителям младших классов, раскрыты интересные приемы формирования математических знаний у умственно отсталых школьников. Работе с геометрическим материалом посвящено методическое пособие В. В. Эк, М. Н. Перовой «Обучение элементам наглядной геометрии во вспомогательной школе» (М., 1983). В нем раскрываются задачи обучения наглядной геометрии, показаны особенности и трудности усвоения учащимися геометрических знаний, овладения измерительными, графическими и чертежными умениями как в младших, так и в старших классах. В пособии описаны методы и приемы, формы организации обучения наглядной геометрии, дается описание средств обучения, 8 подробно изложена методика изучения всех программных тем, раскрыта связь изучения геометрического и арифметического материала, связь наглядной геометрии с профессионально-трудовой подготовкой учащихся. Значительное место в пособии отводится методике решения задач геометрического содержания. Анализ методических основ преподавания математики в школе VIII вида дает возможность сделать заключение, что в настоящее время в методике обучения математике сделаны значительные шаги в поисках эффективных дидактических приемов корригирующего обучения математике на основе учета особенностей умственной деятельности учащихся и усвоения ими математических знаний. Глава 2 ЗАДАЧИ ОБУЧЕНИЯ МАТЕМАТИКЕ В КОРРЕКЦИОННОЙ ШКОЛЕ VIII ВИДА СВЯЗЬ ОБУЧЕНИЯ МАТЕМАТИКЕ С ДРУГИМИ УЧЕБНЫМИ ПРЕДМЕТАМИ, ПРОФЕССИОНАЛЬНЫМ ТРУДОМ Основные задачи специальной (коррекционной) школы VIII вида — максимальное преодоление недостатков познавательной деятельности и эмоционально-волевой сферы умственно отсталых школьников, подготовка их к участию в производительном труде, социальная адаптация в условиях современного общества. При определении задач обучения математике учащихся школы VIII вида необходимо исходить из этих главных задач. ,' Добиться овладения учащимися системой доступных математических знаний, умений и навыков, необходимых в повседневной жизни и в будущей профессии, так прочно, чтобы они стали достоянием учащихся на всю жизнь, — главная общеобразовательная задача обучения математике., / За период обучения в школе VIII вида учащиеся должны получить следующие математические знания и практические умения: а) представления о натуральном числе, нуле, натуральном ряде чисел, об обыкновенных и десятичных дробях; 9 I б) представление об основных величинах (длине отрезка, стои мости, массе предметов, площади фигур, емкости и объеме тел, времени), единицах измерения величин и их соотношениях; в) знание метрической системы мер, мер времени и умение практически пользоваться ими; г) навыки простейших измерений, умение пользоваться инструментами (линейкой, мерной кружкой, весами, часами и т.д.); д) умение производить четыре основных арифметических действия с многозначными числами и дробями; е) умение решать простые и составные (в 3—4 действия) арифметические задачи; ж) представление о плоскостях и объемных геометрических фигурах, знание их свойств, построение этих фигур с помощью чертежных инструментов (линейки, циркуля, чертежного угольника, транспортира):\ Обучая математике учащихся вспомогательных школ, надо учитывать, что усвоение необходимого материала не должно носить характера механического -заучивания и тренировок. Знания, получаемые учениками, должны быть осознанными. От предметной, наглядной основы следует переходить к формированию доступных математических понятий, вести учащихся к обобщениям и на их основе выполнять практические работы. Учащиеся школы VIII вида должны овладеть некоторыми теоретическими знаниями, на основе которых более осознанно формируются практические умения. Это относится в первую очередь к овладению свойствами натурального ряда чисел, закономерностями десятичной системы счисления, свойствами арифметических действий, существующими между ними связями, отношениями, зависимостями. В процессе обучения математике ставится задача применения полученных знаний в разнообразных меняющихся условиях. Решение этой задачи позволит преодолеть характерную для умственно отсталых школьников косность мышления, стереотипность использования знаний. Успешность решения этой задачи во многом зависит от выбора методов и приемов обучения, их целесообразного сочетания и правильности использования в учебном процессе. Если учитель будет прибегать к «натаскиванию» учащихся в решении задач одного и того же вида, пользоваться однотипными формулировками или вопросами, то это может привести к формализму в знаниях, видимости знаний. 10 Математика в школе VIII вида решает одну и ;1 важных специфических задач обучения учеников с нарушением интеллекта — преодоление недостатков их познавательной деятельности и личностных качеств. ) Математика как учебный предмет содержит необходимые предпосылки для развития познавательных способностей учащихся, коррекции интеллектуальной деятельности и эмоционально-волевой сферы. Формируя у умственно отсталых учащихся на наглядной и наглядно-действенной основе первые представления о числе, величине, фигуре, учитель одновременно ставит и решает в процессе обучения математике задачи развития наглядно-действенного, наглядно-образного, а затем и абстрактного мышления этих детей. На уроках математики в результате взаимодействия усилий учителя и учащихся (при направляющем и организующем воздействии учителя) развивается элементарное математическое мышление учащихся, формируются и коррегируются такие его формы, как сравнение, анализ, синтез, развиваются способности к обобщению и конкретизации, создаются условия для коррекции памяти; внимания и других психических функций. В процессе обучения математике развивается речь учащихся, обогащается специфическими математическими терминами и выражениями их словарь. Учащиеся учатся комментировать свою деятельность, давать полный словесный отчет о решении задачи, выполнении арифметических действий или задания по геометрии. Все это требует от учеников больше осознанности своей деятельности, их действия приобретают обобщенный характер, что, безусловно, имеет огромное значение для коррекции недостатков мышления умственно отсталых школьников. Обучение математике организует и дисциплинирует учащихся, способствует формированию таких черт личности, как аккуратность, настойчивость, воля, воспитывает привычку к труду, желание трудиться, умение доводить любое начатое дело до конца. На уроках математики в процессе выполнения практических упражнений (лепка, обводка, штриховка, раскрашивание, вырезание, наклеивание, изменение, конструирование и др.) коррегируются недостатки моторики ребенка. Обучение математике в школе VIII вида способствует решению и воспитательных задач. И Материал арифметических задач, заданий по нумерации и другим темам содержит сведения о развитии промышленности, сельского хозяйства, строительства в нашей стране. Это расширяет кругозор учеников, способствует воспитанию любви к своей Родине. Подготовка учащихся к жизни, к трудовой деятельности является одной из наиболее важных задач обучения. Курс математики должен дать ученикам такие знания и практические умения, которые помогут лучше распознавать в явлениях окружающей жизни математические факты, применять математические знания к решению конкретных практических задач, которые повседневно ставит жизнь. Овладение умениями счета, устных и письменных вычислений, измерений, решение арифметических задач, ориентация во времени и пространстве, распознавание геометрических фигур позволят учащимся более успешно решать жизненно-практические задачи. Реализация при обучении математике общеобразовательной, коррекционно-воспитательной и практической задач в условиях коррекционной школы возможна лишь при осуществлении тесной связи преподавания математики с другими учебными предметами, особенно с трудом. Практика работы школы VIII вида показывает, что учащиеся, хорошо успевающие по математике, как правило, лучше справляются с практическими заданиями по другим предметам. Умственно отсталые школьники не могут самостоятельно установить взаимосвязь между знаниями, полученными по различным учебным предметам. Задача учителя любого учебного предмета, в том числе и математики, — показать, что знания, полученные по какому-либо предмету, обогащают, дополняют знания по другим учебным предметам, тогда учащиеся получат не разобщенные знания, а систему знаний, которая может быть широко использована. На уроках математики необходимо привлекать знания, полученные учащимися на уроках естествознания, географии, истории, рисования, черчения, труда, физкультуры и других предметов. Сведения из этих дисциплин смогут служить материалом для составления арифметических задач, числовых выражений. Например, знание дат исторических событий, протяженности границ нашей Родины и других стран, длины рек, высоты гор, площадей, занимаемых государствами, морями, озерами, урожайности культурных растений, надоев молока, средней массы животных, расхода материала на то или иное изделие, размеров изготовляемых изделий на уроках труда, времени, затраченного на их изготовление, и т.д. может служить прекрасным материалом для составления арифметических задач и примеров, сравнения и анализа чисел и для других упражнений на уроках математики. С другой стороны, математические знания должны найти широкое применение на уроках по другим дисциплинам. Например, на уроках ручного труда учащиеся вырезают из бумаги, лепят из пластилина дидактический материал для уроков математики, одновременно закрепляя навыки счета. Они обводят и вырезают геометрические фигуры (квадраты, прямоугольники, треугольники, круги), учатся различать и называть их. В изготовляемых поделках из бумаги, глины, пластилина они учатся видеть, вычленять и называть основные геометрические фигуры и тела, учатся составлять сюжетные композиции из геометрических фигур (снеговик, домик), орнаменты. На уроках математики учащиеся знакомятся с такими признаками предметов, как длинный — короткий, широкий — узкий, толстый — тонкий и др., а на уроках труда они их закрепляют при изготовлении различных изделий, например при лепке предметов, игрушек (грибов, рыб, пирамидок), при упражнениях в шитье, витье шнурка из ниток (шнур толстый и тонкий, шнур длинный и короткий и т.д.). На уроках ручного труда, так же как и на уроках математики, развивается пространственная ориентировка. Учащиеся учатся показывать и называть верх, низ, левую и правую сторону, середину листа бумаги, правильно размещать на листе бумаги элементы аппликации. При работе с бумагой и картоном они учатся производить разметку по шаблонам, линейке, с помощью циркуля, закрепляя знания единиц измерения и совершенствуя навыки измерения. Тесная связь должна существовать между уроками математики и изобразительного искусства. Органической основой этой связи является общность задач, которые решаются на этих уроках в школе. В процессе обучения математике и изобразительному искусству в школе ставятся задачи развития пространственных представлений и пространственного воображения учащихся, развития глазомера, формирование представлений о геометрических формах и размерах предметов. Учащиеся учатся узнавать, выделять знакомые геометрические фигуры в окружающих предметах или предметах, которые они рисуют. На уроках математики учащиеся знакомятся с геометрическими фигурами: точкой, прямой линией, отрезком, кругом, четырехугольником, прямоугольником, квадратом, параллелограммом, ром- 13 бом, треугольником. На уроках изобразительного искусства учащиеся закрепляют, уточняют представления о геометрических фигурах, учатся их изображать. Например, в 1-м классе они рисуют геометрический орнамент по образцу, по опорным точкам, по трафарету (узор в полосе из квадратов и кругов). Предварительно дети должны вспомнить названия геометрических фигур, выделить их из ряда других фигур сначала по образцу, а затем по названию, проанализировать каждую фигуру, выделяя ее признаки: цвет, размер, форму, расположение на плоскости (листе бумаги). На этом примере видно, что знания, полученные на уроках математики в 1-м классе о геометрических фигурах, закрепляются на уроках изобразительного искусства, а главное, формируются практические умения изображения геометрических фигур. Знания и умения, приобретенные учащимися на уроках изобразительного искусства, используются для лучшего усвоения математики. Так, на уроках математики в 7-м классе учащиеся получают знания о симметричных фигурах, об оси симметрии. А подготовительная работа к усвоению этих знаний ведется уже на уроках рисования в 3—4-х классах при изображении плоских предметов симметричной формы с применением осевой линии: молотка, доски для резания овощей, детской лопатки, теннисной ракетки (3-й класс), вымпела с изображением ракеты, бабочки (4-й класс). Используя эти умения учащихся и их наблюдения симметричных фигур, а также умение их изображать, легко можно дать знания об оси симметрии и симметричных предметах. На уроках географии при изучении отдельных тем, например «Масштаб», «План», учитель широко может использовать знания черчения, математики (при определении периметра, площади, использовании единиц измерения и их соотношений). На уроках истории учитель расширяет и уточняет временные представления учащихся, а также использует их умения в решении задач на время для вычисления продолжительности и удаленности исторических событий. Последние приобретают большую конкретность для учащихся, лучше соотносятся с определенным временем. На уроках физкультуры учащиеся закрепляют знания о величинах (длине, массе). Величина находит здесь свое конкретное выражение особенно тогда, когда нужно пройти на лыжах, пробежать, проплыть то или иное расстояние, прыгнуть, преодолев 14 определенную высоту или длину. Уроки физкультуры позволяют практически ощутить, осознать взаимозависимость между временем, расстоянием и скоростью, о которых они узнают на уроках математики. Своеобразна связь обучения математике с русским языком. На уроках математики учитель решает задачу развития математической речи учащихся, обогащения ее математическим словарем (математическими терминами, выражениями). Опыт и наблюдения показывают, что точность, лаконичность математической речи положительно влияют на усвоение математических знаний, а умение описать (рассказать) ход решения задачи, числового выражения способствует сознательному выполнению действий. Учитель математики следит не только за правильностью решения задач и примеров, но и за грамотностью письма, правильным стилем при построении предложений. На уроках русского языка необходимо закреплять написание числительных и других математических терминов и выражений. Учитель математики следит на правильностью произношения звуков учащимися. Он должен поддерживать контакт с логопедами, учитывать работу логопеда, направленную на коррекцию дефектов речи, произношения, работать над автоматизацией поставленных звуков. В противном случае ученик будет считать, что следить за своей речью, за правильным произношением звуков и слов надо только на логопедических занятиях, а на других учебных предметах это делать необязательно.,,-- Коррекционная школа VIII вида решает задачу взаимосвязи обучения и подготовки учащихся к труду таким образом, чтобы эти два процесса шли не параллельно, а были тесно связаны и обогащали друг друга. Математика как учебный предмет также ставит и решает задачу связи обучения математике с трудом. Знания, полученные на уроках математики, необходимо использовать, закреплять при овладении учащимися трудовой профессией в учебных мастерских, на пришкольно-опытном участке, а также на промышленных и сельскохозяйственных предприятиях, где учащиеся проходят производственную практику, т.е. заняты производительным трудом. Предпосылки, обеспечивающие связь обучения математики с трудом, заложены в программе, но реальные связи могут осуществлять лишь в процессе обучения. 1 Педагогические и психологические исследования показывают, ,что умственно отсталые школьники, даже обладая знаниями, не могут ими воспользоваться при решении трудовых задач, у них не возникает ассоциаций между определенными математическими знаниями, закономерностями и теми жизненными явлениями, с которыми они сталкиваются в процессе выполнения трудовых операций. Следовательно, задача и учителя математики и учителя труда — создавать такие ситуации, в которых бы эти ассоциативные связи возникали. Процесс обучения математике следует строить так, чтобы знания, полученные на уроках труда, а также трудовой опыт учащихся использовались на уроках математики, повышали интерес учащихся к изучению этого предмета, показывали жизненную необходимость математических знаний. Практические умения: измерительные, графические, конструктивные, вычислительные, предусмотрены программой по математике и находят самое широкое применение в любом виде труда, в любой профессии. Однако эти знания ученик сможет применить на уроках труда лишь в том случае, если и учитель математики, и учитель труда научат учащихся применять эти знания и будут включать их в жизненно-практические задачи. Необходимо, чтобы учитель математики хорошо знал, какими профессиями овладевают учащиеся данного класса, в каких видах труда они участвуют, с какими орудиями труда, материалами они имеют дело, какими измерительными и чертежными инструментами пользуются, какие изделия изготовляют. Учителя математики должны знать, какие модели, таблицы, диафильмы, кинофильмы использует учитель профессионального труда и какие математические знания для их осмысления, понимания потребуются учащимся. Изучив все это, т.е. очень подробно ознакомившись с программами по тем видам профессионального труда, которыми овладевают учащиеся класса, и с практическими работами в мастерских, учитель математики намечает, какие темы курса математики наиболее тесно связаны с трудом, как сделать, чтобы знания, полученные при изучении математики, подготовили учащихся к овладению трудовым процессом, сделали их труд более осмысленным. Например, известно, что на уроках математики учащиеся знакомятся со всеми мерами длины. На уроках труда учитель по трудовому обучению должен показать учащимся практическое использование этих мер, ставить задачи, требующие выражения заданной величины в различных единицах измерения, требовать точности измерений, вырабатывать у учащихся навыки пользования измерительными инструментами. 16 В свою очередь учитель математики может использовать знания и опыт учащихся, полученные на уроках труда. Например, учитель спрашивает: «Какое изделие изготовляли на уроках труда? Из какого материала оно выполнено? Какова толщина лис- тового металла? С помощью какого инструмента определяли тол- щину металла? Какую меру длины надо выбрать для определения толщины металла? В каких мерах1 производят измерения, когда снимают мерку для шитья юбки, блузки в швейной мастерской? В каких мерах производят измерения, когда делают совок в мастер- ской?» На уроках слесарного дела учащиеся производят разметку и обработку деталей прямоугольной формы по заданным размерам. Учитель математики должен подготовить к этому учащихся теоре- тически: повторить с ними свойства квадрата и прямоугольника, правила измерения, единицы измерения длины и их соотношения. На уроках труда учитель трудового обучения учит школьников использовать полученные знания в новой ситуации, знакомит с новыми инструментами для разметки (чертилка, кернер, разметоч- ный циркуль и др.), показывает, чем ученическая линейка отлича- ется от складного метра. На уроках слесарного дела учащиеся изготовляют предметы цилиндрической формы: детское ведро, лейку, масленку для жид- кого масла. В этом случае они должны широко использовать свои знания о свойствах цилиндра, умения сделать развертку цилинд- ра, вычислить длину окружности основания. В свою очередь на уроках математики учитель требует от учащихся самостоятельно снять размеры с изготовленного на уроке труда изделия и определить расход материала на его изго товление с учетом припуска на фальц (швы). Можно предложить и такое задание: сделать расчет размеров и разметку изделия цилиндрической формы (ведро, лейка, картон- ный стакан) по заданному диаметру и высоте.. На уроках сельскохозяйственного труда учащиеся также при- меняют математические знания. Они измеряют периметр и пло щадь участка, засаженного теми или иными культурами, измеря ют расстояние между растениями или деревьями, определяют их рост, количество семян для посадки, количество вносимых удобре- ний, т.е. используют измерительные и вычислительные навыки. Вместо выражения «единицы измерения» в коррекционной школе следует употреблять слово «меры», так как учащиеся смешивают понятия: единицы — первый разряд в десятичной системе счисления, единица — первое число в последовательности числового ряда и единицы измерения. 17 Особенно полезно привлекать учащихся к изготовлению наглядных пособий по математике, предварительно повторив те знания, которые требуются для изготовления пособий. Так, на уроках в столярной и переплетно-картонажной мастерских можно изготовить модели геометрических тел и фигур, арифметический ящик, абаки, таблицы классов и разрядов, квадраты, разделенные на 100 равных клеток, на 10 полос для иллюстрации разрядных единиц, единиц измерения площади и объема (1 см2, 1 дм2, 1 см3, 1 дм3), модели весов, циферблатов, таблицы для устного счета и т.д. Учитель труда должен ознакомить учащихся с расходом материала на то или иное изделие, привлечь их к составлению сметы на приобретение материалов и инструментов для уроков труда, а на уроках математики эти числовые данные нужно использовать для составления задач. В этом случае решение задач будет тесно связано с жизнью, с интересами самих учащихся, носить жизненный характер. Таким образом, учитель математики учит учащихся применять теоретические знания, вычислительные и измерительные умения при решении задач, которые возникают на уроках труда в мастерских, на пришкольно-опытном участке, промышленном или сельскохозяйственном предприятии, где учащиеся проходят производственную практику. В свою очередь преподаватели труда должны хорошо знать программу и учебники по математике и стараться использовать, закреплять и углублять математические знания, умения и навыки. Однако для связи обучения математики с трудом недостаточно только изучения программы, необходимо взаимопосещение уроков, совместное их обсуждение, рассмотрение вопросов взаимосвязи обучения математике с профессионально-трудовым обучением на совместных методических объединениях учителей труда и математики. Только при совместных усилиях учителей труда и математики возможно взаимно обогатить преподавание: трудовые операции будут выполняться учащимися более осмысленно, а преподавание математики будет носить жизненно-практический характер. |