Главная страница
Навигация по странице:

  • Уроки выработки практических умений

  • 4. Уроки повторения обобщения и систематизация знаний (усвоение способов действий в комплексе)

  • 5. Уроки проверки (контроля) знаний

  • Уроки проверки знаний

  • 6. Комбинированные уроки

  • СТРУКТУРА УРОКА МАТЕМАТИКИ

  • Методика преподования математики. Предисловие рецензенты доктор педагогических наук, профессор Н. М. Назарова кандидат педагогических наук В. В. Эк Перова М. Н


    Скачать 4.24 Mb.
    НазваниеПредисловие рецензенты доктор педагогических наук, профессор Н. М. Назарова кандидат педагогических наук В. В. Эк Перова М. Н
    АнкорМетодика преподования математики.doc
    Дата09.02.2018
    Размер4.24 Mb.
    Формат файлаdoc
    Имя файлаМетодика преподования математики.doc
    ТипДокументы
    #15378
    страница8 из 37
    1   ...   4   5   6   7   8   9   10   11   ...   37

    3. Уроки выработки практических умений (применение знаний в новой ситуации)

    Основная дидактическая цель этих уроков направлена на кор­рекцию и закрепление знаний, выработку умений и применение знаний и умений в новых условиях. Из-за неоднородности состава учащихся каждого класса, различных возможностей в усвоении ими математических знаний уровень закрепления знаний и форми-74


    ^IIия умений на одном и том же уроке у разных учеников пчен. В этом случае требуется дифференцированный подход к 'цимся с учетом их индивидуальных особенностей. На уроках н'пления знаний большое место отводится упражнениям в за-1лении нумерации, устным вычислениям, решению задач и меров, выполнению измерительных и чертежных работ и др. >(|)фективность разных видов упражнений зависит от содержа-материала, а также от характера заданий, предлагаемых уче-.1М. Важно правильно распределить упражнения, которые вы-ияются под руководством учителя и самостоятельно. Кроме ', необходимо соблюдать правильное соотношение между уп-чиениями обучающими и тренировочными. 11а первых уроках выработки практических умений большинст-упражнений носит обучающий характер, они проводятся под оводством учителя. Однако степень вмешательства учителя в ктическую деятельность учащихся будет определяться индиви-льными способностями ученика при усвоении знаний. На по-дующих уроках все большее место должны занимать самостоя-ьные работы, выполнение упражнений творческого характера, •ющих развивающее, корригирующее значение, упражнений, в орых учащиеся получали бы навыки самоконтроля. Например, примеру на сложение составить три примера — один на сло-ние и два на вычитание:

    4
    3+4=7
    +3=7 7-4=3 7-3=4

    Выполнить действия 375:4, 43x8 с проверкой.

    Вставить пропущенную цифру: ЗПх5=165.

    Изменить вопрос в задаче так, чтобы она решалась не одним, а днумя действиями.

    Придумать пример с заданным ответом. Придумать пример оп-|н'деленного вида (на деление с остатком, пример, к решению которого удобно применить прием округления, перестановки со­множителей и т. д.).

    Уроки выработки практических умений разнообразны по • I руктуре. В состав таких уроков могут входить следующие м;шы: 1. Организация класса. 2. Проверка домашнего задания. И. Упражнения в устном счете. 4. Воспроизведение и коррекция умений для решения задач в новых ситуациях. 5. Подготовка к комплексному применению знаний, умений. 6. Самостоятельная

    75

    I

    работа по комплексному применению знаний, умений на репродук­тивном, а затем и продуктивном уровне. 7. Обобщение и система­тизация знаний и способов выполнения деятельности. 8. Повторе­ние ранее полученных знаний. 9. Задание на дом. 10. Итог урока.

    4. Уроки повторения обобщения и систематизация знаний (усвоение способов действий в комплексе)

    Повторение пройденного имеет целью углубить, обобщить и систематизировать материал, связать его с жизнью и практичес­кой деятельностью учащихся, использовать знания в новых ситуа­циях. Повторение в процессе обучения математике проводится на разных этапах: в начале учебного года после изучения определенной темы, раздела, в конце четверти и в конце учебного года. Целью таких уроков повторения, которые проводятся в начале учебного года, является восстановление знаний учащихся за прошлый учеб­ный год, их систематизация и постепенная связь с новым учебным материалом. Уроки повторения после изучения темы или раздела| имеют целью углубить знания, усиленно фиксировать внимание уча-! щихся на существенных признаках чисел, действий, геометрических] форм, понятий и т. д., сопоставлять сравнивать сходные и контраст-] ные понятия, действия, выработать у учащихся обобщенные способы действий, т. е. способы действий в комплексе.

    Структура уроков повторения может быть самой разнообраз- ] ной и зависеть в первую очередь от цели урока, содержания повторяемого материала.

    Примерная структура урока: 1) организация учащихся клас-( са; 2) проверка домашнего задания; 3) всесторонняя проверка знаний; 4) подготовка к обобщающей деятельности; 5) обобщение знаний силами учащихся; 6) обобщение знаний учителем, исполь­зование обобщенных знаний при решении жизненно-практических задач, заданий в новых ситуациях; 7) домашнее задание; 8) подве­дение итога урока.

    Учитель выделяет цель каждого этапа урока.

    5. Уроки проверки (контроля) знаний

    Проверка знаний и умений использовать их в практике проис­ходит на каждом уроке математики.

    В отдельные уроки включаются небольшие письменные прове­рочные работы, на которые отводится 10—15 мин, но проводятся 76
    | исциальные уроки самостоятельных и контрольных работ, на 'Шрые отводится большая часть урока.

    Такие уроки обычно проводятся после изучения темы или раз-'ли, в конце четверти и года.

    Уроки проверки знаний включают следующие, почти всегда шнаковые этапы:

    1. Организация учащихся на урок. 2. Сообщение цели урока. Ознакомление с содержанием контрольной работы и порядком •• выполнения. 4. Самостоятельное выполнение контрольной ра-1ты учащимися.

    Для учащихся, которые занимались по основной или упрощен-| >й программе, а также по индивидуальным программам, состав-шется контрольная работа в соответствии с их программой.

    Контрольные работы, как правило, включают задачи, примеры, здания на проверку знания нумерации, свойств геометрических фигур, измерительных и чертежных навыков.

    Некоторые контрольные работы, особенно те, которые прово-

    | 1тся после изучения определенной темы, могут включать мень-

    пге количество видов заданий и ограничиться лишь проверкой

    пения решать задачи или примеры или проверкой знаний нуме-

    щии, чертежных и измерительных навыков и т. д. Такие работы

    :|нут быть рассчитаны не на целый урок, а на 10—15 мин.

    Учитель проверяет контрольные работы и тщательно анализи­рует допущенные в них ошибки.

    В последующий урок включается работа над ошибками кон-| рольной работы как один из этапов урока. Сначала решаются примеры и задачи, в которых было допущено больше всего оши­бок, затем решаются примеры и задачи, аналогичные тем, в кото­рых были допущены ошибки. К доске вызываются, как правило, ученики, допустившие в контрольной работе ошибки. Если эти ученики вновь допускают ошибки, то учитель проводит дополни-н'льные разъяснения, дает этим ученикам индивидуальную рабо-I у, чтобы ликвидировать пробелы в знаниях, т. е. осуществляет коррекцию знаний.

    6. Комбинированные уроки

    Комбинированные уроки являются наиболее распространен­ными в школе VIII вида. Они включают в себя и повторение ранее полученных знаний, и сообщение новых знаний, и пер-иичное их закрепление, и формирование умений и навыков, и

    77


    учет знаний. На них ставятся и решаются несколько дидактичес­ких целей.

    В комбинированные уроки, особенно в младших классах, вклю­чается как арифметический, так и геометрический материал. Комт бинированные уроки позволяют осуществить непрерывность по­вторения математических знаний, сформировать умения и навыки, использовать знания в новых ситуациях, изучать новый материал) небольшими порциями, что является наиболее доступным для] школьников с нарушением интеллекта.

    СТРУКТУРА УРОКА МАТЕМАТИКИ

    Структура урока определяется дидактическими целями. Состав­
    ные части (этапы) урока тесно связаны между собой и обусловли-1
    вают друг друга. Каждый этап урока ограничен определенным]
    временем. !

    На уроке математики в школе VIII вида наиболее широкое] распространение получили следующие этапы урока:

    1. Организация учащихся на урок.

    2. Проверка домашнего задания.

    3. Устный счет. ;

    4. Актуализация чувственного опыта и опорных знаний с ]
    целью повторения пройденного и подведения к восприятию новых;
    знаний. !

    1. Сообщение темы, целей урока. Сообщение нового материала
      учителем, восприятие и первичное осознание его учащимися.

    2. Первичное закрепление новых знаний и включение их в
      систему имеющихся у учащихся знаний.

    3. Повторение, обобщение и систематизация имеющихся зна
      ний учащихся под руководством учителя и в самостоятельной
      деятельности.

    4. Задание на дом.

    5. Подведение итогов урока.

    Структурные компоненты и их порядок могут меняться. Не все компоненты могут входить в один урок. Однако они присущи большинству уроков математики в школе VIII вида. Остановимся на их краткой характеристике.

    1. Учитывая особенности эмоционально-волевой сферы учащих­ся коррекционной школы, а именно повышенную возбудимость одних, заторможенность, инертность других, учитель должен орга-78
    ать начало урока так, чтобы собрать внимание учащихся, чь их от той деятельности, которой они были заняты во I перемены, переключить их внимание на учебную деятель-Спокойным, но требовательным тоном он должен привлечь шие всех к себе, а затем и к тому материалу, который будет ться на уроке. Иногда в начале урока следует сообщить план |>1 на уроке, а в конце подвести итог выполнения плана. I прием в работе учителя организует учащихся, воспитывает нетственность. Учащиеся приучаются к планированию своей льности, что помогает им ориентироваться во времени (уча-я стараются намеченный план выполнить до конца), у них I шнвается критическое отношение к собственной деятельности и |нтельности товарищей по классу.

    Но сообщение темы и плана работы в начале урока не всегда (лесообразно, так как это снимает элемент неожиданности. На (сдельных уроках тема объявляется после объяснения нового ма-вриала.

    Можно в начале урока создать определенную жизненную или гровую ситуацию, поставить перед ребятами поисковую задачу и опросить найти ее решение. Это позволит быстро вовлечь уча-лхся в учебную деятельность, вызвать интерес. 2. Проверку домашнего задания учитель осуществляет на роке по-разному.

    Если задание было на закрепление нового материала, то из сего домашнего задания необходимо выбрать типичные примеры, 1ражнения, проверить их с подробным объяснением хода реше-|ия, дать возможность остальным ученикам сверить свой ответ с ответом того ученика, который отвечает. При проверке задачи выслушать не только вопросы и решение, но и поставить несколь­ко вопросов на выявление осмысления хода решения.

    Если задание является новым для учащихся, то целесообразно провести не выборочную проверку, а проверить всю работу.

    Возможны сверка с заранее написанными на доске ответами, обмен работами и взаимопроверка, выполнение работы, аналогич­ной той, которая выполнялась дома, и т. д.

    Иногда целесообразно проверку домашнего задания сочетать с устным счетом. В этом случае учитель не просто просит прочи­тать пример и назвать ответ, а дает дополнительное задание либо вычислительного характера, либо связанное с анализом числа. В этом случае ученик, прежде чем прочитать пример и дать ответ,

    79

    должен произвести • вычисления. Например, в домашней работе есть упражнения 36x2=72; 147:7=21 и др. Учитель говорит: «Найдите пример, ответ которого на 28 меньше 100. Какое это число? Найдите пример, в ответе которого число, состоящее из: двух десятков и единицы». Такого рода задания активизируют всех учащихся, пробуждают у учащихся интерес к процессу про верки и позволяют закрепить анализ чисел, а также те вычисли' тельные приемы, которые учитель считает на данном этапе необ холимыми.

    Правильность выполнения домашнего задания проверяется I оценивается учителем ежедневно. При этом учитель детально ана­лизирует типичные ошибки, трудности у учащихся всего класса и индивидуальные трудности и ошибки у каждого ученика и намеча­ет работу по ликвидации этих трудностей с такими учениками на следующем уроке.

    3. Устный счет является неотъемлемой частью почти каждого урока математики в школе VIII вида.

    Устный счет может проводиться не обязательно в начале урока, но в середине, конце, в зависимости от целей устного счета на уроке.

    Устный счет должен быть тесно связан с темой и основной обучающей задачей урока. Однако в устный счет могут включать­ся и такие упражнения, которые ставят целью выработать бег­лость счета, закрепить те или иные вычислительные приемы. Уст­ный счет нередко ставит целью подготовить учащихся к восприя­тию новых знаний. Устный счет включает несколько форм упраж нений и заданий: это могут быть устные арифметические и гео­метрические задачи, упражнения вычислительного характера, за­дания на закрепление нумерации, различение фигур, повторение их свойств и т. д. Длительность этого этапа урока не должна превышать 10—12 мин, так как устный счет требует от учащихся максимальной отдачи умственных сил. Устный счет, как правило, проходит в быстром темпе, происходит довольно частое переклю­чение с одного вида деятельности на другой, с одной формы упражнений на другую. Как известно, такого рода переключения чрезвычайно полезны для развития мыслительных процессов, но трудны для умственно отсталых школьников.

    Упражнения для устного счета предъявляются как в устной, так и в письменной форме. Нередко вместо записи на доске учитель пользуется различными таблицами с краткой записью 80
    ржания задач, с записью чисел, арифметических знаков, вы-•ний.

    Целесообразно устным заданиям придавать занимательный ха-сф, шире использовать дидактические игры математического ржания. Это позволяет поддерживать постоянный интерес шхся к устному счету.

    здания для устного счета необходимо подбирать с учетом шидуальных возможностей каждого ребенка. Это позволит и фронтальную работу и включить в активную учебную дея-н'льность всех учащихся класса.

    При устном счете важно установить обратную связь между учителем и учащимися. С этой целью используются различные средства, например «светофор», когда правильность ответа учени­ки подтверждают зеленым цветом кругов, а неправильность — красным; использование табличек с цифрами, из которых ученики составляют числа ответов и др. После проведения устного счета подводится итог, учитель оценивает активность класса, правиль­ность их ответов, успехи отдельных учеников.

    4. Актуализация чувственного опыта и опорных знаний с целью повторения пройденного на уроке служит связующим зве­ном между ранее усвоенными знаниями и новым материалом или способствует закреплению материала, изученного на предыдущих уроках. На этом этапе урока закрепляются вычислительные, изме­рительные, чертежные умения и навыки, повторяются теоретичес­кие знания (правила, определения, свойства фигур и т. д.) в ходе выполнения практических работ. Повторение, как правило, прохо­дит в виде фронтальной работы с классом; в этот этап урока включается нередко и опрос учащихся.

    На уроках математики следует осуществлять подведение уча­щихся к восприятию нового путем подбора таких упражнений, которые позволят использовать прошлый опыт учеников, их зна­ния, умения и тем облегчить восприятие нового, включение новых знаний в систему уже имеющихся. Следовательно, на этом этапе урока надо воспроизвести в памяти учащихся те знания, которые помогут учащимся лучше усвоить новый материал.

    Например, новым для учащихся является сложение чисел с переходом через разряд в пределах 20 вида 9+2, 9+3 и т. д. (2— 3-й классы). Для усвоения этого материала необходимо включить повторение состава чисел первого десятка, упражнения на дополне­ние однозначного числа до круглого десятка, а также решение

    81

    примера вида 9+1 + 1, 9+1+3 и вида 10+2, 10+3 и т. д. Такого рода упражнения помогут учащимся более осмысленно и с мень­шими трудностями усвоить новый вычислительный прием сложе­ния с переходом через разряд.

    5. Сообщение новых знаний в школе VIII вида включается в большинство уроков математики, так как на каждом уроке новый материал преподносится небольшими порциями. При объяснении учитель опирается на имеющиеся звания, т. е. прошлый опыт школьников. На этом этапе урока учащиеся усваивают новые вычислительные приемы, знакомятся с новыми правилами, закона­ми, решением нового вида задач, с нумерацией чисел, их свойст­вами, новыми геометрическими фигурами и их свойствами, по­строением геометрических фигур, новыми единицами мер и изме­рениями и т. д., т. е. получают новую информацию. Они наблюда­ют математические факты, операции и на их основе делают до­ступные для них обобщения, выводы, формулируют правила. На этом этапе выполняются упражнения под руководством учителя с комментированием своих действий, т. е.. осмысляется восприня­тый материал. Объяснение ведется теми методами, которые учи­тель считает на данном этапе наиболее целесообразными. Это может быть и метод изложения знаний в сочетании с наблюдения­ми и демонстрацией, эвристическая беседа, метод практических работ. При объяснении важно правильно выбрать наглядные сред­ства и умело их использовать.

    Целесообразно, чтобы после объяснения учителя сильный уче­ник еще раз воспроизвел его рассказ. Это необходимо сделать потому, что многие умственно отсталые учащиеся с первого объ­яснения не могут усвоить новый вычислительный прием и исполь­зовать его даже при решении примеров такого же вида, не могут запомнить свойства фигуры, понять способ решения задачи и т. д. 6. На этапе первичного закрепления новых знаний используют­ся методы: практических работ, работа с учебником, элементы программирования.

    Первые задания будут аналогичны тем, на которых шло вос­приятие новых знаний. Они выполняются под руководством учите­ля, при е^ строгом контроле, чтобы не закрепить ошибочного понимания материала, предупредить возможные ошибки учащих­ся. Учитель на этом этапе требует от учащихся подробного ком­ментирования своих действий, старается, чтобы учащиеся включа­ли в свою речь новые математические термины. Далее закрепле-82
    пне знаний происходит в различных ситуациях, при решении раз­личных умственных учебных и практических задач. Привлекается и разнообразный наглядный и дидактический материал. Например, 'тли объяснение нумерации происходило на палочках, то закреп-моние проводится и на счетах, и на абаке, и в работе с монетами,

    линейкой и т. д.

    На этом этапе урока может использоваться и самостоятельная работа учащихся по учебнику, по карточкам, по записям на доске. И процессе самостоятельной работы учитель осуществляет диффе­ренцированный и индивидуальный подход к учащимся, учитывая уровень усвоения нового учебного материала, темп работы каждо­го ученика.

    7. Повторение, обобщение и систематизация математических шаний требует организации достаточного количества упражне­ний, которые выполняются учащимися как под руководством учи­теля, так и в самостоятельной деятельности. На этом этапе урока происходит выработка умений и навыков измерения и вычерчива­ния фигур, решения задач, нахождения значений числовых выра­жений, сравнения чисел и т. д. Именно в этой части урока полу­ченные знания учащиеся учатся применять в различных ситуаци­ях, при решении учебных и практических задач. Большое место на данном этапе урока отводится самостоятельной работе учащих­ся. Учитель подбирает виды самостоятельной работы с учетом возможностей каждого ученика класса, осуществляя дифференци­рованный и индивидуальный подход. Упражнения для самостоя­тельной работы не только формируют приемы и способы учебной работы, но и активизируют познавательную деятельность учащих­ся, развивают у них инициативу, смекалку. Этому во многом способствуют поиски рациональных приемов вычислений, реше­ние нестандартных задач, вариативность упражнений, составление выражений и задач, сравнение, сопоставление чисел и выраже­ний, конкретизация абстрактных математических понятий, выде­ление главного и т. д. Учитывая быстрое забывание учащимися знаний, на этом этапе урока важно постоянно воспроизводить главное из ранее пройденного материала.

    8. Задание на дом целесообразнее всего задавать в конце урока, но можно это делать и раньше. Домашнее задание должно быть небольшим (составлять не более '/з работы, выполненной на уроке) и доступным для самостоятельного выполнения всеми уча­щимися без исключения. Это требование возможно выполнить

    83

    при осуществлении дифференцированного и индивидуального под­хода к учащимся.

    Следовательно содержание домашнего задания следует дифферен­
    цировать и по объему и по содержанию. Тот материал, который еще
    недостаточно усвоен учениками, на дом задавать не следует. |

    Задавать задание на дом можно только тогда, когда учащиеся? приобрели достаточные навыки выполнения самостоятельной ра­боты (это приблизительно в начале или в середине 2-го класса). Некоторые школы принимают решение работать без домашнего задания, интенсифицируя работу на уроках, повышая его эффек­тивность. Это безусловно положительный опыт, который требует] изучения и распространения.

    Домашнее задание надо задавать до звонка. Необходимо, чтобы учащиеся не только записали в дневник задание, но и успели посмотреть, что задано на дом. Иногда требуется и дополнитель­ное разъяснение того, как нужно выполнить домашнее задание.

    9. При подведении итогов урока важно добиваться от учащих­ся выделения того главного, что было на данном уроке. Этому помогают вопросы учителя. Он спрашивает, что нового узнали на уроке: какое новое правило, свойство, какие новые вычислитель­ные приемы и т. д. Если в начале урока учитель знакомил уча­щихся с планом урока, то в конце урока он проверяет, все ли выполнено, что предусматривалось планом. Если план выполнен не полностью, то учитель вскрывает причины такого положения. На этом этапе урока выставляется и поурочный балл отдель­ным учащимся, дается обоснование поурочному баллу каждого ученика.
    1   ...   4   5   6   7   8   9   10   11   ...   37


    написать администратору сайта