лод. Программа курса Методика преподавания математики делит его на две части Общая методика
Скачать 7.21 Mb.
|
прямой CD», «отрезок АВ прямой CD» и т. п.). Единственный выход— в школьном обучении математике необходимо строго соблюдать принцип однозначности употребления имен. Практика подтверждает возможность и целесообразность соблюдения этого принципа. Можно применить следующую систему обозначений: Принцип однозначности утверждает, что каждое имя может быть именем не более чем одного предмета. Однако один и тот же предмет может иметь много различных имен (синонимов). Например, записи «5 — 3», «8 • 2 — 14», «23 : 22» можно рассматривать как различные имена числа 2 (после выполнения вычислений во всех случаях получается значение 2). Равенство 5 — 3 = 8-2— 14 выражает тот факт, что имена, стоящие в левой и правой частях этого равенства, обозначают один и тот же объект, имеют одно и то же значение (число, имеющее имя «2»). Если, например, в левой части этого равенства заменим «5 — 3» именем «2» с тем же значением, получим также истинное равенство «2 = 8-2 — 14». На этом частном примере мы иллюстрировали еще один важный принцип употребления имен. 3) Принцип замены имен: предложение не меняет своего истинностного значения, когда одно из входящих в него имен заменяется другим именем, имеющим то же самое значение (т. е. синонимом). Различные имена одного и того же предмета часто по-разному характеризуют его, с помощью различной информации о нем. В таком случае говорят, что имена имеют одно и то же значение, но различные смыслы. Например, одна и та же прямая может обозначаться символом «а» или символом «АБ». Первое из этих имен — простое имя, произвольно закрепляемое за прямой (мы можем обозначить эту же прямую буквой «Ь»), рассматриваемое как неделимое. Второе имя «АВ» — составное имя, содержащее другие имена («А», «В») в качестве своих частей и обладающее строением, отражающим тот способ, которым оно обозначает предмет (прямую, проходящую через точки А и В). Вполне понятно, что второе, составное имя обладает большей познавательной ценностью. Оно сообщает нам, что обозначаемая этим именем прямая проходит через точки А и В. Таким образом, в отношении именования участвуют три различных понятия: «имя», «значение имени», «смысл имени». Говорят, что имя называет свое значение и выражает свой смысл (или что оно имеет такое-то значение и такой-то смысл), а смысл определяет значение. Из сказанного следует, что надо различать выражения «Не имеет смысла» и «Не имеет значения». Например, в области натуральных чисел имя «корень уравнения х + 4 = 3» не имеет значения. В то же время это имя имеет ясный смысл: это такое число, что после подстановки его вместо х в данное уравнение слева и справа от знака равенства получатся имена одного и того же числа. Точно так же в области действительных чисел имя «К—4» не имеет значения, но имеет смысл (такое число, что после возведения его в квадрат получится число —4) или имя «2 : 0» не имеет значения, но имеет смысл (число, которое, будучи умножено на 0, дает 2). В школьном преподавании необходимо тщательно следить за тем, чтобы употребляемые термины и символы имели определенные смысл и значение. 1.5. Не все явные определения можно отнести к определениям через ближайший род и видовое отличие. Приведем несколько примеров. (1) «Прямая перпендикулярна плоскости, если она перпендикулярна любой прямой этой плоскости», или, в символической записи, (2) «Число а делится на число Ь, если существует число с такое, что а = Ь*с», или |