Главная страница

лод. Программа курса Методика преподавания математики делит его на две части Общая методика


Скачать 7.21 Mb.
НазваниеПрограмма курса Методика преподавания математики делит его на две части Общая методика
Дата17.09.2019
Размер7.21 Mb.
Формат файлаdoc
Имя файла[CHerkasov_R.S.,_Stolyar_A.A.]_Metodika_prepodavan(BookFi).doc
ТипПрограмма курса
#87048
страница67 из 109
1   ...   63   64   65   66   67   68   69   70   ...   109
(рис. 28).

Решение этой задачи облегчит семиклассникам доказательство Довольно сложной для них теоремы Фалеса.

2.2. Развитие мышления учащих­ся при решении математических задач.

1). Мыслительные умения, вос­приятие и память при решении задач. Решение математических задач требует применения многочисленных мыслительных умений: анали­зировать заданную ситуацию, сопо­ставлять данные и искомые, решае­мую задачу с решенными ранее, вы­являя скрытые свойства заданной ситуации; конструировать простейшие математические модели, осу­ществляя мысленный эксперимент; синтезировать, отбирая полезную для решения задачи информацию, систематизируя ее; кратко и чет­ко, в виде текста, символически, графически и т. д. оформлять свои мысли; объективно оценивать полученные при решении за­дачи результаты, обобщать или специализировать результаты ре­шения задачи, исследовать особые проявления заданной ситуации. Сказанное говорит о необходимости учитывать при обучении решению математических задач современные достижения психологической науки.

Исследованиями советских психологов установлено, что уже вос­приятие задачи различно у различных учащихся данного класса. Способный к математике ученик воспринимает и единичные элементы задачи, и комплексы ее взаимосвязанных элементов, и роль каждого элемента в комплексе. Средний ученик воспринимает лишь отдельные элементы задачи. Поэтому при обучении решению задач необходимо специально анализировать с учащимися связь и отношения элементов задачи. Так облегчится выбор приемов переработки условия задачи. При решении задач часто приходится обращаться к памяти. Инди­видуальная память способного к математике ученика сохраняет не всю информацию, а преимущественно «обобщенные и свернутые структуры». Сохранение такой информации не загружает мозг избыточной информацией, а запоминаемую позволяет дольше хранить и легче использовать. Обучение обобщениям при решении задач раз­вивает, таким образом, не только мышление, но и память, формирует «обобщенные ассоциации». При непосредственном решении математи­ческих задач и обучении их решению необходимо все это учитывать. 2) Обучение мышлению. Эффективность математических задач и упражнений в значительной мере зависит от степени творческой активности учеников при их решении.

Собственно, одно из основных назначений задач и упражнений и заключается в том, чтобы активизировать мыслительную деятель­ность учеников на уроке.

Математические задачи должны прежде всего будить мысль уче­ников, заставлять ее работать, развиваться, совершенствоваться. Говоря об активизации мышления учеников, нельзя забывать, что при решении математических задач учащиеся не только выполняют

построения, преобразования и запоминают формулировки, но и обу­чаются четкому мышлению, умению рассуждать, сопоставлять и противопоставлять факты, находить в них общее и различное, делать правильные умозаключения.

Правильно организованное обучение решению задач приучает к полноценной аргументации со ссылкой в соответствующих случаях на аксиомы, введенные определения и ранее доказанные теоремы. С целью приучения к достаточно полной и точной аргументации по­лезно время от времени предлагать учащимся записывать решение задач в два столбца: слева — утверждения, выкладки, вычисления, справа — аргументы, т. е. предложения, подтверждающие правиль­ность высказанных утверждений, выполняемых выкладок и вычис­лений.


Пример 1. Решите уравнение


Пример 2. Докажите, что в равно­бедренной трапеции углы при основании равны.

Д
1   ...   63   64   65   66   67   68   69   70   ...   109


написать администратору сайта